mirror of https://github.com/open-mmlab/mmyolo.git
59 lines
1.9 KiB
Python
59 lines
1.9 KiB
Python
_base_ = './rtmdet_s_syncbn_fast_8xb32-300e_coco.py'
|
|
checkpoint = 'https://download.openmmlab.com/mmdetection/v3.0/rtmdet/cspnext_rsb_pretrain/cspnext-tiny_imagenet_600e.pth' # noqa
|
|
|
|
# ========================modified parameters======================
|
|
deepen_factor = 0.167
|
|
widen_factor = 0.375
|
|
img_scale = _base_.img_scale
|
|
|
|
# ratio range for random resize
|
|
random_resize_ratio_range = (0.5, 2.0)
|
|
# Number of cached images in mosaic
|
|
mosaic_max_cached_images = 20
|
|
# Number of cached images in mixup
|
|
mixup_max_cached_images = 10
|
|
|
|
# =======================Unmodified in most cases==================
|
|
model = dict(
|
|
backbone=dict(
|
|
deepen_factor=deepen_factor,
|
|
widen_factor=widen_factor,
|
|
init_cfg=dict(checkpoint=checkpoint)),
|
|
neck=dict(
|
|
deepen_factor=deepen_factor,
|
|
widen_factor=widen_factor,
|
|
),
|
|
bbox_head=dict(head_module=dict(widen_factor=widen_factor)))
|
|
|
|
train_pipeline = [
|
|
dict(type='LoadImageFromFile', file_client_args=_base_.file_client_args),
|
|
dict(type='LoadAnnotations', with_bbox=True),
|
|
dict(
|
|
type='Mosaic',
|
|
img_scale=img_scale,
|
|
use_cached=True,
|
|
max_cached_images=mosaic_max_cached_images, # note
|
|
random_pop=False, # note
|
|
pad_val=114.0),
|
|
dict(
|
|
type='mmdet.RandomResize',
|
|
# img_scale is (width, height)
|
|
scale=(img_scale[0] * 2, img_scale[1] * 2),
|
|
ratio_range=random_resize_ratio_range,
|
|
resize_type='mmdet.Resize',
|
|
keep_ratio=True),
|
|
dict(type='mmdet.RandomCrop', crop_size=img_scale),
|
|
dict(type='mmdet.YOLOXHSVRandomAug'),
|
|
dict(type='mmdet.RandomFlip', prob=0.5),
|
|
dict(type='mmdet.Pad', size=img_scale, pad_val=dict(img=(114, 114, 114))),
|
|
dict(
|
|
type='YOLOv5MixUp',
|
|
use_cached=True,
|
|
random_pop=False,
|
|
max_cached_images=mixup_max_cached_images,
|
|
prob=0.5),
|
|
dict(type='mmdet.PackDetInputs')
|
|
]
|
|
|
|
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
|