mmyolo/configs/yolov8/yolov8_l_syncbn_fast_8xb16-500e_coco.py
Nioolek 75fc8fc2a3
[Feature] YOLOv8 supports using mask annotation to optimize bbox (#484)
* add cfg

* add copypaste

* add todo

* 在mosaic和mixup中处理gt_masks,改config

* fix cat bug

* add finetune box in affine

* add repr

* del albu config in l

* add doc

* add config

* format code

* fix loadmask

* addconfig,fix mask

* fix loadann

* fix tra

* update LoadAnnotations

* update

* support mask

* fix error

* fix error

* fix config and no maskrefine bug

* fix

* fix

* update config

* format code

* beauty config

* add yolov5 config and readme

* beauty yolov5 config

* add ut

* fix ut. bitmap 2 poly

* fix ut and add mix transform ut.

* fix bool

* fix loadann

* rollback yolov5

* rollback yolov5

* format

* 提高速度

* update

---------

Co-authored-by: huanghaian <huanghaian@sensetime.com>
2023-02-20 11:11:13 +08:00

40 lines
1.2 KiB
Python

_base_ = './yolov8_m_syncbn_fast_8xb16-500e_coco.py'
# ========================modified parameters======================
deepen_factor = 1.00
widen_factor = 1.00
last_stage_out_channels = 512
mixup_prob = 0.15
# =======================Unmodified in most cases==================
pre_transform = _base_.pre_transform
mosaic_affine_transform = _base_.mosaic_affine_transform
last_transform = _base_.last_transform
model = dict(
backbone=dict(
last_stage_out_channels=last_stage_out_channels,
deepen_factor=deepen_factor,
widen_factor=widen_factor),
neck=dict(
deepen_factor=deepen_factor,
widen_factor=widen_factor,
in_channels=[256, 512, last_stage_out_channels],
out_channels=[256, 512, last_stage_out_channels]),
bbox_head=dict(
head_module=dict(
widen_factor=widen_factor,
in_channels=[256, 512, last_stage_out_channels])))
train_pipeline = [
*pre_transform, *mosaic_affine_transform,
dict(
type='YOLOv5MixUp',
prob=mixup_prob,
pre_transform=[*pre_transform, *mosaic_affine_transform]),
*last_transform
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))