mirror of https://github.com/open-mmlab/mmyolo.git
227 lines
7.9 KiB
Python
227 lines
7.9 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import torch
|
|
from torch import Tensor
|
|
|
|
_XYWH2XYXY = torch.tensor([[1.0, 0.0, 1.0, 0.0], [0.0, 1.0, 0.0, 1.0],
|
|
[-0.5, 0.0, 0.5, 0.0], [0.0, -0.5, 0.0, 0.5]],
|
|
dtype=torch.float32)
|
|
|
|
|
|
class TRTEfficientNMSop(torch.autograd.Function):
|
|
|
|
@staticmethod
|
|
def forward(
|
|
ctx,
|
|
boxes: Tensor,
|
|
scores: Tensor,
|
|
background_class: int = -1,
|
|
box_coding: int = 0,
|
|
iou_threshold: float = 0.45,
|
|
max_output_boxes: int = 100,
|
|
plugin_version: str = '1',
|
|
score_activation: int = 0,
|
|
score_threshold: float = 0.25,
|
|
):
|
|
batch_size, _, num_classes = scores.shape
|
|
num_det = torch.randint(
|
|
0, max_output_boxes, (batch_size, 1), dtype=torch.int32)
|
|
det_boxes = torch.randn(batch_size, max_output_boxes, 4)
|
|
det_scores = torch.randn(batch_size, max_output_boxes)
|
|
det_classes = torch.randint(
|
|
0, num_classes, (batch_size, max_output_boxes), dtype=torch.int32)
|
|
return num_det, det_boxes, det_scores, det_classes
|
|
|
|
@staticmethod
|
|
def symbolic(g,
|
|
boxes: Tensor,
|
|
scores: Tensor,
|
|
background_class: int = -1,
|
|
box_coding: int = 0,
|
|
iou_threshold: float = 0.45,
|
|
max_output_boxes: int = 100,
|
|
plugin_version: str = '1',
|
|
score_activation: int = 0,
|
|
score_threshold: float = 0.25):
|
|
out = g.op(
|
|
'TRT::EfficientNMS_TRT',
|
|
boxes,
|
|
scores,
|
|
background_class_i=background_class,
|
|
box_coding_i=box_coding,
|
|
iou_threshold_f=iou_threshold,
|
|
max_output_boxes_i=max_output_boxes,
|
|
plugin_version_s=plugin_version,
|
|
score_activation_i=score_activation,
|
|
score_threshold_f=score_threshold,
|
|
outputs=4)
|
|
num_det, det_boxes, det_scores, det_classes = out
|
|
return num_det, det_boxes, det_scores, det_classes
|
|
|
|
|
|
class TRTbatchedNMSop(torch.autograd.Function):
|
|
"""TensorRT NMS operation."""
|
|
|
|
@staticmethod
|
|
def forward(
|
|
ctx,
|
|
boxes: Tensor,
|
|
scores: Tensor,
|
|
plugin_version: str = '1',
|
|
shareLocation: int = 1,
|
|
backgroundLabelId: int = -1,
|
|
numClasses: int = 80,
|
|
topK: int = 1000,
|
|
keepTopK: int = 100,
|
|
scoreThreshold: float = 0.25,
|
|
iouThreshold: float = 0.45,
|
|
isNormalized: int = 0,
|
|
clipBoxes: int = 0,
|
|
scoreBits: int = 16,
|
|
caffeSemantics: int = 1,
|
|
):
|
|
batch_size, _, numClasses = scores.shape
|
|
num_det = torch.randint(
|
|
0, keepTopK, (batch_size, 1), dtype=torch.int32)
|
|
det_boxes = torch.randn(batch_size, keepTopK, 4)
|
|
det_scores = torch.randn(batch_size, keepTopK)
|
|
det_classes = torch.randint(0, numClasses,
|
|
(batch_size, keepTopK)).float()
|
|
return num_det, det_boxes, det_scores, det_classes
|
|
|
|
@staticmethod
|
|
def symbolic(
|
|
g,
|
|
boxes: Tensor,
|
|
scores: Tensor,
|
|
plugin_version: str = '1',
|
|
shareLocation: int = 1,
|
|
backgroundLabelId: int = -1,
|
|
numClasses: int = 80,
|
|
topK: int = 1000,
|
|
keepTopK: int = 100,
|
|
scoreThreshold: float = 0.25,
|
|
iouThreshold: float = 0.45,
|
|
isNormalized: int = 0,
|
|
clipBoxes: int = 0,
|
|
scoreBits: int = 16,
|
|
caffeSemantics: int = 1,
|
|
):
|
|
out = g.op(
|
|
'TRT::BatchedNMSDynamic_TRT',
|
|
boxes,
|
|
scores,
|
|
shareLocation_i=shareLocation,
|
|
plugin_version_s=plugin_version,
|
|
backgroundLabelId_i=backgroundLabelId,
|
|
numClasses_i=numClasses,
|
|
topK_i=topK,
|
|
keepTopK_i=keepTopK,
|
|
scoreThreshold_f=scoreThreshold,
|
|
iouThreshold_f=iouThreshold,
|
|
isNormalized_i=isNormalized,
|
|
clipBoxes_i=clipBoxes,
|
|
scoreBits_i=scoreBits,
|
|
caffeSemantics_i=caffeSemantics,
|
|
outputs=4)
|
|
num_det, det_boxes, det_scores, det_classes = out
|
|
return num_det, det_boxes, det_scores, det_classes
|
|
|
|
|
|
def _efficient_nms(
|
|
boxes: Tensor,
|
|
scores: Tensor,
|
|
max_output_boxes_per_class: int = 1000,
|
|
iou_threshold: float = 0.5,
|
|
score_threshold: float = 0.05,
|
|
pre_top_k: int = -1,
|
|
keep_top_k: int = 100,
|
|
box_coding: int = 0,
|
|
):
|
|
"""Wrapper for `efficient_nms` with TensorRT.
|
|
Args:
|
|
boxes (Tensor): The bounding boxes of shape [N, num_boxes, 4].
|
|
scores (Tensor): The detection scores of shape
|
|
[N, num_boxes, num_classes].
|
|
max_output_boxes_per_class (int): Maximum number of output
|
|
boxes per class of nms. Defaults to 1000.
|
|
iou_threshold (float): IOU threshold of nms. Defaults to 0.5.
|
|
score_threshold (float): score threshold of nms.
|
|
Defaults to 0.05.
|
|
pre_top_k (int): Number of top K boxes to keep before nms.
|
|
Defaults to -1.
|
|
keep_top_k (int): Number of top K boxes to keep after nms.
|
|
Defaults to -1.
|
|
box_coding (int): Bounding boxes format for nms.
|
|
Defaults to 0 means [x1, y1 ,x2, y2].
|
|
Set to 1 means [x, y, w, h].
|
|
Returns:
|
|
tuple[Tensor, Tensor, Tensor, Tensor]:
|
|
(num_det, det_boxes, det_scores, det_classes),
|
|
`num_det` of shape [N, 1]
|
|
`det_boxes` of shape [N, num_det, 4]
|
|
`det_scores` of shape [N, num_det]
|
|
`det_classes` of shape [N, num_det]
|
|
"""
|
|
num_det, det_boxes, det_scores, det_classes = TRTEfficientNMSop.apply(
|
|
boxes, scores, -1, box_coding, iou_threshold, keep_top_k, '1', 0,
|
|
score_threshold)
|
|
return num_det, det_boxes, det_scores, det_classes
|
|
|
|
|
|
def _batched_nms(
|
|
boxes: Tensor,
|
|
scores: Tensor,
|
|
max_output_boxes_per_class: int = 1000,
|
|
iou_threshold: float = 0.5,
|
|
score_threshold: float = 0.05,
|
|
pre_top_k: int = -1,
|
|
keep_top_k: int = 100,
|
|
box_coding: int = 0,
|
|
):
|
|
"""Wrapper for `efficient_nms` with TensorRT.
|
|
Args:
|
|
boxes (Tensor): The bounding boxes of shape [N, num_boxes, 4].
|
|
scores (Tensor): The detection scores of shape
|
|
[N, num_boxes, num_classes].
|
|
max_output_boxes_per_class (int): Maximum number of output
|
|
boxes per class of nms. Defaults to 1000.
|
|
iou_threshold (float): IOU threshold of nms. Defaults to 0.5.
|
|
score_threshold (float): score threshold of nms.
|
|
Defaults to 0.05.
|
|
pre_top_k (int): Number of top K boxes to keep before nms.
|
|
Defaults to -1.
|
|
keep_top_k (int): Number of top K boxes to keep after nms.
|
|
Defaults to -1.
|
|
box_coding (int): Bounding boxes format for nms.
|
|
Defaults to 0 means [x1, y1 ,x2, y2].
|
|
Set to 1 means [x, y, w, h].
|
|
Returns:
|
|
tuple[Tensor, Tensor, Tensor, Tensor]:
|
|
(num_det, det_boxes, det_scores, det_classes),
|
|
`num_det` of shape [N, 1]
|
|
`det_boxes` of shape [N, num_det, 4]
|
|
`det_scores` of shape [N, num_det]
|
|
`det_classes` of shape [N, num_det]
|
|
"""
|
|
if box_coding == 1:
|
|
boxes = boxes @ (_XYWH2XYXY.to(boxes.device))
|
|
boxes = boxes if boxes.dim() == 4 else boxes.unsqueeze(2)
|
|
_, _, numClasses = scores.shape
|
|
|
|
num_det, det_boxes, det_scores, det_classes = TRTbatchedNMSop.apply(
|
|
boxes, scores, '1', 1, -1, int(numClasses), min(pre_top_k, 4096),
|
|
keep_top_k, score_threshold, iou_threshold, 0, 0, 16, 1)
|
|
|
|
det_classes = det_classes.int()
|
|
return num_det, det_boxes, det_scores, det_classes
|
|
|
|
|
|
def efficient_nms(*args, **kwargs):
|
|
"""Wrapper function for `_efficient_nms`."""
|
|
return _efficient_nms(*args, **kwargs)
|
|
|
|
|
|
def batched_nms(*args, **kwargs):
|
|
"""Wrapper function for `_batched_nms`."""
|
|
return _batched_nms(*args, **kwargs)
|