mirror of https://github.com/open-mmlab/mmyolo.git
189 lines
6.3 KiB
Python
189 lines
6.3 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import argparse
|
|
import copy
|
|
import os
|
|
import time
|
|
|
|
import torch
|
|
from mmengine import Config, DictAction
|
|
from mmengine.dist import get_world_size, init_dist
|
|
from mmengine.logging import MMLogger, print_log
|
|
from mmengine.registry import init_default_scope
|
|
from mmengine.runner import Runner, load_checkpoint
|
|
from mmengine.utils import mkdir_or_exist
|
|
from mmengine.utils.dl_utils import set_multi_processing
|
|
|
|
from mmyolo.registry import MODELS
|
|
|
|
|
|
# TODO: Refactoring and improving
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(description='MMYOLO benchmark a model')
|
|
parser.add_argument('config', help='test config file path')
|
|
parser.add_argument('checkpoint', help='checkpoint file')
|
|
parser.add_argument(
|
|
'--repeat-num',
|
|
type=int,
|
|
default=1,
|
|
help='number of repeat times of measurement for averaging the results')
|
|
parser.add_argument(
|
|
'--max-iter', type=int, default=2000, help='num of max iter')
|
|
parser.add_argument(
|
|
'--log-interval', type=int, default=50, help='interval of logging')
|
|
parser.add_argument(
|
|
'--work-dir',
|
|
help='the directory to save the file containing '
|
|
'benchmark metrics')
|
|
parser.add_argument(
|
|
'--fuse-conv-bn',
|
|
action='store_true',
|
|
help='Whether to fuse conv and bn, this will slightly increase'
|
|
'the inference speed')
|
|
parser.add_argument(
|
|
'--cfg-options',
|
|
nargs='+',
|
|
action=DictAction,
|
|
help='override some settings in the used config, the key-value pair '
|
|
'in xxx=yyy format will be merged into config file. If the value to '
|
|
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
|
|
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
|
|
'Note that the quotation marks are necessary and that no white space '
|
|
'is allowed.')
|
|
parser.add_argument(
|
|
'--launcher',
|
|
choices=['none', 'pytorch', 'slurm', 'mpi'],
|
|
default='none',
|
|
help='job launcher')
|
|
parser.add_argument('--local_rank', type=int, default=0)
|
|
args = parser.parse_args()
|
|
if 'LOCAL_RANK' not in os.environ:
|
|
os.environ['LOCAL_RANK'] = str(args.local_rank)
|
|
return args
|
|
|
|
|
|
def measure_inference_speed(cfg, checkpoint, max_iter, log_interval,
|
|
is_fuse_conv_bn):
|
|
env_cfg = cfg.get('env_cfg')
|
|
if env_cfg.get('cudnn_benchmark'):
|
|
torch.backends.cudnn.benchmark = True
|
|
|
|
mp_cfg: dict = env_cfg.get('mp_cfg', {})
|
|
set_multi_processing(**mp_cfg, distributed=cfg.distributed)
|
|
|
|
# Because multiple processes will occupy additional CPU resources,
|
|
# FPS statistics will be more unstable when num_workers is not 0.
|
|
# It is reasonable to set num_workers to 0.
|
|
dataloader_cfg = cfg.test_dataloader
|
|
dataloader_cfg['num_workers'] = 0
|
|
dataloader_cfg['batch_size'] = 1
|
|
dataloader_cfg['persistent_workers'] = False
|
|
data_loader = Runner.build_dataloader(dataloader_cfg)
|
|
|
|
# build the model and load checkpoint
|
|
model = MODELS.build(cfg.model)
|
|
load_checkpoint(model, checkpoint, map_location='cpu')
|
|
model = model.cuda()
|
|
model.eval()
|
|
|
|
# the first several iterations may be very slow so skip them
|
|
num_warmup = 5
|
|
pure_inf_time = 0
|
|
fps = 0
|
|
|
|
# benchmark with 2000 image and take the average
|
|
for i, data in enumerate(data_loader):
|
|
|
|
torch.cuda.synchronize()
|
|
start_time = time.perf_counter()
|
|
|
|
with torch.no_grad():
|
|
model.test_step(data)
|
|
|
|
torch.cuda.synchronize()
|
|
elapsed = time.perf_counter() - start_time
|
|
|
|
if i >= num_warmup:
|
|
pure_inf_time += elapsed
|
|
if (i + 1) % log_interval == 0:
|
|
fps = (i + 1 - num_warmup) / pure_inf_time
|
|
print_log(
|
|
f'Done image [{i + 1:<3}/ {max_iter}], '
|
|
f'fps: {fps:.1f} img / s, '
|
|
f'times per image: {1000 / fps:.1f} ms / img', 'current')
|
|
|
|
if (i + 1) == max_iter:
|
|
fps = (i + 1 - num_warmup) / pure_inf_time
|
|
print_log(
|
|
f'Overall fps: {fps:.1f} img / s, '
|
|
f'times per image: {1000 / fps:.1f} ms / img', 'current')
|
|
break
|
|
return fps
|
|
|
|
|
|
def repeat_measure_inference_speed(cfg,
|
|
checkpoint,
|
|
max_iter,
|
|
log_interval,
|
|
is_fuse_conv_bn,
|
|
repeat_num=1):
|
|
assert repeat_num >= 1
|
|
|
|
fps_list = []
|
|
|
|
for _ in range(repeat_num):
|
|
cp_cfg = copy.deepcopy(cfg)
|
|
|
|
fps_list.append(
|
|
measure_inference_speed(cp_cfg, checkpoint, max_iter, log_interval,
|
|
is_fuse_conv_bn))
|
|
|
|
if repeat_num > 1:
|
|
fps_list_ = [round(fps, 1) for fps in fps_list]
|
|
times_pre_image_list_ = [round(1000 / fps, 1) for fps in fps_list]
|
|
mean_fps_ = sum(fps_list_) / len(fps_list_)
|
|
mean_times_pre_image_ = sum(times_pre_image_list_) / len(
|
|
times_pre_image_list_)
|
|
print_log(
|
|
f'Overall fps: {fps_list_}[{mean_fps_:.1f}] img / s, '
|
|
f'times per image: '
|
|
f'{times_pre_image_list_}[{mean_times_pre_image_:.1f}] ms / img',
|
|
'current')
|
|
return fps_list
|
|
|
|
return fps_list[0]
|
|
|
|
|
|
# TODO: refactoring
|
|
def main():
|
|
args = parse_args()
|
|
|
|
cfg = Config.fromfile(args.config)
|
|
if args.cfg_options is not None:
|
|
cfg.merge_from_dict(args.cfg_options)
|
|
|
|
init_default_scope(cfg.get('default_scope', 'mmyolo'))
|
|
|
|
distributed = False
|
|
if args.launcher != 'none':
|
|
init_dist(args.launcher, **cfg.get('env_cfg', {}).get('dist_cfg', {}))
|
|
distributed = True
|
|
assert get_world_size(
|
|
) == 1, 'Inference benchmark does not allow distributed multi-GPU'
|
|
|
|
cfg.distributed = distributed
|
|
|
|
log_file = None
|
|
if args.work_dir:
|
|
log_file = os.path.join(args.work_dir, 'benchmark.log')
|
|
mkdir_or_exist(args.work_dir)
|
|
|
|
MMLogger.get_instance('mmyolo', log_file=log_file, log_level='INFO')
|
|
|
|
repeat_measure_inference_speed(cfg, args.checkpoint, args.max_iter,
|
|
args.log_interval, args.fuse_conv_bn,
|
|
args.repeat_num)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|