mmyolo/tools/analysis_tools/dataset_analysis.py

511 lines
18 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os.path
from statistics import median
import matplotlib.patches as mpatches
import matplotlib.pyplot as plt
import numpy as np
from mmengine.config import Config
from mmengine.dataset.dataset_wrapper import ConcatDataset
from mmengine.utils import ProgressBar
from prettytable import PrettyTable
from mmyolo.registry import DATASETS
from mmyolo.utils import register_all_modules
def parse_args():
parser = argparse.ArgumentParser(
description='Distribution of categories and bbox instances')
parser.add_argument('config', help='config file path')
parser.add_argument(
'--val-dataset',
default=False,
action='store_true',
help='The default train_dataset.'
'To change it to val_dataset, enter "--val-dataset"')
parser.add_argument(
'--class-name',
default=None,
type=str,
help='Display specific class, e.g., "bicycle"')
parser.add_argument(
'--area-rule',
default=None,
type=int,
nargs='+',
help='Redefine area rules,but no more than three numbers.'
' e.g., 30 70 125')
parser.add_argument(
'--func',
default=None,
type=str,
choices=[
'show_bbox_num', 'show_bbox_wh', 'show_bbox_wh_ratio',
'show_bbox_area'
],
help='Dataset analysis function selection.')
parser.add_argument(
'--output-dir',
default='./',
type=str,
help='Save address of dataset analysis visualization results,'
'Save in "./dataset_analysis/" by default')
args = parser.parse_args()
return args
def show_bbox_num(cfg, args, fig_set, class_name, class_num):
"""Display the distribution map of categories and number of bbox
instances."""
print('\n\nDrawing bbox_num figure:')
# Draw designs
fig = plt.figure(
figsize=(fig_set['figsize'][0], fig_set['figsize'][1]), dpi=300)
plt.bar(class_name, class_num, align='center')
# Draw titles, labels and so on
for x, y in enumerate(class_num):
plt.text(x, y, '%s' % y, ha='center', fontsize=fig_set['fontsize'] + 3)
plt.xticks(rotation=fig_set['xticks_angle'])
plt.xlabel('Category Name')
plt.ylabel('Num of instances')
plt.title(cfg.dataset_type)
# Save figuer
out_dir = os.path.join(args.output_dir, 'dataset_analysis')
if not os.path.exists(out_dir):
os.makedirs(out_dir)
out_name = fig_set['out_name']
fig.savefig(
f'{out_dir}/{out_name}_bbox_num.jpg',
bbox_inches='tight',
pad_inches=0.1) # Save Image
plt.close()
print(f'End and save in {out_dir}/{out_name}_bbox_num.jpg')
def show_bbox_wh(args, fig_set, class_bbox_w, class_bbox_h, class_name):
"""Display the width and height distribution of categories and bbox
instances."""
print('\n\nDrawing bbox_wh figure:')
# Draw designs
fig, ax = plt.subplots(
figsize=(fig_set['figsize'][0], fig_set['figsize'][1]), dpi=300)
# Set the position of the map and label on the x-axis
positions_w = list(range(0, 12 * len(class_name), 12))
positions_h = list(range(6, 12 * len(class_name), 12))
positions_x_lable = list(range(3, 12 * len(class_name) + 1, 12))
ax.violinplot(
class_bbox_w, positions_w, showmeans=True, showmedians=True, widths=4)
ax.violinplot(
class_bbox_h, positions_h, showmeans=True, showmedians=True, widths=4)
# Draw titles, labels and so on
plt.xticks(rotation=fig_set['xticks_angle'])
plt.ylabel('The width or height of bbox')
plt.xlabel('Class name')
plt.title('Width or height distribution of classes and bbox instances')
# Draw the max, min and median of wide data in violin chart
for i in range(len(class_bbox_w)):
plt.text(
positions_w[i],
median(class_bbox_w[i]),
f'{"%.2f" % median(class_bbox_w[i])}',
ha='center',
fontsize=fig_set['fontsize'])
plt.text(
positions_w[i],
max(class_bbox_w[i]),
f'{"%.2f" % max(class_bbox_w[i])}',
ha='center',
fontsize=fig_set['fontsize'])
plt.text(
positions_w[i],
min(class_bbox_w[i]),
f'{"%.2f" % min(class_bbox_w[i])}',
ha='center',
fontsize=fig_set['fontsize'])
# Draw the max, min and median of height data in violin chart
for i in range(len(positions_h)):
plt.text(
positions_h[i],
median(class_bbox_h[i]),
f'{"%.2f" % median(class_bbox_h[i])}',
ha='center',
fontsize=fig_set['fontsize'])
plt.text(
positions_h[i],
max(class_bbox_h[i]),
f'{"%.2f" % max(class_bbox_h[i])}',
ha='center',
fontsize=fig_set['fontsize'])
plt.text(
positions_h[i],
min(class_bbox_h[i]),
f'{"%.2f" % min(class_bbox_h[i])}',
ha='center',
fontsize=fig_set['fontsize'])
# Draw Legend
plt.setp(ax, xticks=positions_x_lable, xticklabels=class_name)
labels = ['bbox_w', 'bbox_h']
colors = ['steelblue', 'darkorange']
patches = [
mpatches.Patch(color=colors[i], label=f'{labels[i]:s}')
for i in range(len(colors))
]
ax = plt.gca()
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width, box.height * 0.8])
ax.legend(loc='upper center', handles=patches, ncol=2)
# Save figuer
out_dir = os.path.join(args.output_dir, 'dataset_analysis')
if not os.path.exists(out_dir):
os.makedirs(out_dir)
out_name = fig_set['out_name']
fig.savefig(
f'{out_dir}/{out_name}_bbox_wh.jpg',
bbox_inches='tight',
pad_inches=0.1) # Save Image
plt.close()
print(f'End and save in {out_dir}/{out_name}_bbox_wh.jpg')
def show_bbox_wh_ratio(args, fig_set, class_name, class_bbox_ratio):
"""Display the distribution map of category and bbox instance width and
height ratio."""
print('\n\nDrawing bbox_wh_ratio figure:')
# Draw designs
fig, ax = plt.subplots(
figsize=(fig_set['figsize'][0], fig_set['figsize'][1]), dpi=300)
# Set the position of the map and label on the x-axis
positions = list(range(0, 6 * len(class_name), 6))
ax.violinplot(
class_bbox_ratio,
positions,
showmeans=True,
showmedians=True,
widths=5)
# Draw titles, labels and so on
plt.xticks(rotation=fig_set['xticks_angle'])
plt.ylabel('Ratio of width to height of bbox')
plt.xlabel('Class name')
plt.title('Width to height ratio distribution of class and bbox instances')
# Draw the max, min and median of wide data in violin chart
for i in range(len(class_bbox_ratio)):
plt.text(
positions[i],
median(class_bbox_ratio[i]),
f'{"%.2f" % median(class_bbox_ratio[i])}',
ha='center',
fontsize=fig_set['fontsize'])
plt.text(
positions[i],
max(class_bbox_ratio[i]),
f'{"%.2f" % max(class_bbox_ratio[i])}',
ha='center',
fontsize=fig_set['fontsize'])
plt.text(
positions[i],
min(class_bbox_ratio[i]),
f'{"%.2f" % min(class_bbox_ratio[i])}',
ha='center',
fontsize=fig_set['fontsize'])
# Set the position of the map and label on the x-axis
plt.setp(ax, xticks=positions, xticklabels=class_name)
# Save figuer
out_dir = os.path.join(args.output_dir, 'dataset_analysis')
if not os.path.exists(out_dir):
os.makedirs(out_dir)
out_name = fig_set['out_name']
fig.savefig(
f'{out_dir}/{out_name}_bbox_ratio.jpg',
bbox_inches='tight',
pad_inches=0.1) # Save Image
plt.close()
print(f'End and save in {out_dir}/{out_name}_bbox_ratio.jpg')
def show_bbox_area(args, fig_set, area_rule, class_name, bbox_area_num):
"""Display the distribution map of category and bbox instance area based on
the rules of large, medium and small objects."""
print('\n\nDrawing bbox_area figure:')
# Set the direct distance of each label and the width of each histogram
# Set the required labels and colors
positions = np.arange(0, 2 * len(class_name), 2)
width = 0.4
labels = ['Small', 'Mediun', 'Large', 'Huge']
colors = ['#438675', '#F7B469', '#6BA6DA', '#913221']
# Draw designs
fig = plt.figure(
figsize=(fig_set['figsize'][0], fig_set['figsize'][1]), dpi=300)
for i in range(len(area_rule) - 1):
area_num = [bbox_area_num[idx][i] for idx in range(len(class_name))]
plt.bar(
positions + width * i,
area_num,
width,
label=labels[i],
color=colors[i])
for idx, (x, y) in enumerate(zip(positions.tolist(), area_num)):
plt.text(
x + width * i,
y,
y,
ha='center',
fontsize=fig_set['fontsize'] - 1)
# Draw titles, labels and so on
plt.xticks(rotation=fig_set['xticks_angle'])
plt.xticks(positions + width * ((len(area_rule) - 2) / 2), class_name)
plt.ylabel('Class Area')
plt.xlabel('Class Name')
plt.title(
'Area and number of large, medium and small objects of each class')
# Set and Draw Legend
patches = [
mpatches.Patch(color=colors[i], label=f'{labels[i]:s}')
for i in range(len(area_rule) - 1)
]
ax = plt.gca()
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width, box.height * 0.8])
ax.legend(loc='upper center', handles=patches, ncol=len(area_rule) - 1)
# Save figuer
out_dir = os.path.join(args.output_dir, 'dataset_analysis')
if not os.path.exists(out_dir):
os.makedirs(out_dir)
out_name = fig_set['out_name']
fig.savefig(
f'{out_dir}/{out_name}_bbox_area.jpg',
bbox_inches='tight',
pad_inches=0.1) # Save Image
plt.close()
print(f'End and save in {out_dir}/{out_name}_bbox_area.jpg')
def show_class_list(classes, class_num):
"""Print the data of the class obtained by the current run."""
print('\n\nThe information obtained is as follows:')
class_info = PrettyTable()
class_info.title = 'Information of dataset class'
# List Print Settings
# If the quantity is too large, 25 rows will be displayed in each column
if len(classes) < 25:
class_info.add_column('Class name', classes)
class_info.add_column('Bbox num', class_num)
elif len(classes) % 25 != 0 and len(classes) > 25:
col_num = int(len(classes) / 25) + 1
class_nums = class_num.tolist()
class_name_list = list(classes)
for i in range(0, (col_num * 25) - len(classes)):
class_name_list.append('')
class_nums.append('')
for i in range(0, len(class_name_list), 25):
class_info.add_column('Class name', class_name_list[i:i + 25])
class_info.add_column('Bbox num', class_nums[i:i + 25])
# Align display data to the left
class_info.align['Class name'] = 'l'
class_info.align['Bbox num'] = 'l'
print(class_info)
def show_data_list(args, area_rule):
"""Print run setup information."""
print('\n\nPrint current running information:')
data_info = PrettyTable()
data_info.title = 'Dataset information'
# Print the corresponding information according to the settings
if args.val_dataset is False:
data_info.add_column('Dataset type', ['train_dataset'])
elif args.val_dataset is True:
data_info.add_column('Dataset type', ['val_dataset'])
if args.class_name is None:
data_info.add_column('Class name', ['All classes'])
else:
data_info.add_column('Class name', [args.class_name])
if args.func is None:
data_info.add_column('Function', ['All function'])
else:
data_info.add_column('Function', [args.func])
data_info.add_column('Area rule', [area_rule])
print(data_info)
def show_data_classes(data_classes):
"""When printing an error, all class names of the dataset."""
print('\n\nThe name of the class contained in the dataset:')
data_classes_info = PrettyTable()
data_classes_info.title = 'Information of dataset class'
# List Print Settings
# If the quantity is too large, 25 rows will be displayed in each column
if len(data_classes) < 25:
data_classes_info.add_column('Class name', data_classes)
elif len(data_classes) % 25 != 0 and len(data_classes) > 25:
col_num = int(len(data_classes) / 25) + 1
data_name_list = list(data_classes)
for i in range(0, (col_num * 25) - len(data_classes)):
data_name_list.append('')
for i in range(0, len(data_name_list), 25):
data_classes_info.add_column('Class name',
data_name_list[i:i + 25])
# Align display data to the left
data_classes_info.align['Class name'] = 'l'
print(data_classes_info)
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
# register all modules in mmdet into the registries
register_all_modules()
# 1.Build Dataset
if args.val_dataset is False:
dataset = DATASETS.build(cfg.train_dataloader.dataset)
elif args.val_dataset is True:
dataset = DATASETS.build(cfg.val_dataloader.dataset)
# Determine whether the dataset is ConcatDataset
if isinstance(dataset, ConcatDataset):
datasets = dataset.datasets
data_list = []
for idx in range(len(datasets)):
datasets_list = datasets[idx].load_data_list()
data_list += datasets_list
else:
data_list = dataset.load_data_list()
# 2.Prepare data
# Drawing settings
fig_all_set = {
'figsize': [35, 18],
'fontsize': int(10 - 0.08 * len(dataset.metainfo['CLASSES'])),
'xticks_angle': 70,
'out_name': cfg.dataset_type
}
fig_one_set = {
'figsize': [15, 10],
'fontsize': 10,
'xticks_angle': 0,
'out_name': args.class_name
}
# Call the category name and save address
if args.class_name is None:
classes = dataset.metainfo['CLASSES']
classes_idx = [i for i in range(len(classes))]
fig_set = fig_all_set
elif args.class_name in dataset.metainfo['CLASSES']:
classes = [args.class_name]
classes_idx = [dataset.metainfo['CLASSES'].index(args.class_name)]
fig_set = fig_one_set
else:
data_classes = dataset.metainfo['CLASSES']
show_data_classes(data_classes)
raise RuntimeError(f'Expected args.class_name to be one of the list,'
f'but got "{args.class_name}"')
# Building Area Rules
if args.area_rule is None:
area_rule = [0, 32, 96, 1e5]
elif args.area_rule and len(args.area_rule) <= 3:
area_rules = [0] + args.area_rule + [1e5]
area_rule = sorted(area_rules)
else:
raise RuntimeError(
f'Expected the "{args.area_rule}" to be e.g. 30 60 120, '
'and no more than three numbers.')
# Build arrays or lists to store data for each category
class_num = np.zeros((len(classes), ), dtype=np.int64)
class_bbox = [[] for _ in classes]
class_name = []
class_bbox_w = []
class_bbox_h = []
class_bbox_ratio = []
bbox_area_num = []
show_data_list(args, area_rule)
# Get the quantity and bbox data corresponding to each category
print('\nRead the information of each picture in the dataset:')
progress_bar = ProgressBar(len(dataset))
for img in data_list:
for instance in img['instances']:
if instance[
'bbox_label'] in classes_idx and args.class_name is None:
class_num[instance['bbox_label']] += 1
class_bbox[instance['bbox_label']].append(instance['bbox'])
elif instance['bbox_label'] in classes_idx and args.class_name:
class_num[0] += 1
class_bbox[0].append(instance['bbox'])
progress_bar.update()
show_class_list(classes, class_num)
# Get the width, height and area of bbox corresponding to each category
print('\nRead bbox information in each class:')
progress_bar_classes = ProgressBar(len(classes))
for idx, (classes, classes_idx) in enumerate(zip(classes, classes_idx)):
bbox = np.array(class_bbox[idx])
bbox_area_nums = np.zeros((len(area_rule) - 1, ), dtype=np.int64)
if len(bbox) > 0:
bbox_wh = bbox[:, 2:4] - bbox[:, 0:2]
bbox_ratio = bbox_wh[:, 0] / bbox_wh[:, 1]
bbox_area = bbox_wh[:, 0] * bbox_wh[:, 1]
class_bbox_w.append(bbox_wh[:, 0].tolist())
class_bbox_h.append(bbox_wh[:, 1].tolist())
class_bbox_ratio.append(bbox_ratio.tolist())
# The area rule, there is an section between two numbers
for i in range(len(area_rule) - 1):
bbox_area_nums[i] = np.logical_and(
bbox_area >= area_rule[i]**2,
bbox_area < area_rule[i + 1]**2).sum()
elif len(bbox) == 0:
class_bbox_w.append([0])
class_bbox_h.append([0])
class_bbox_ratio.append([0])
class_name.append(classes)
bbox_area_num.append(bbox_area_nums.tolist())
progress_bar_classes.update()
# 3.draw Dataset Information
if args.func is None:
show_bbox_num(cfg, args, fig_set, class_name, class_num)
show_bbox_wh(args, fig_set, class_bbox_w, class_bbox_h, class_name)
show_bbox_wh_ratio(args, fig_set, class_name, class_bbox_ratio)
show_bbox_area(args, fig_set, area_rule, class_name, bbox_area_num)
elif args.func == 'show_bbox_num':
show_bbox_num(cfg, args, fig_set, class_name, class_num)
elif args.func == 'show_bbox_wh':
show_bbox_wh(args, fig_set, class_bbox_w, class_bbox_h, class_name)
elif args.func == 'show_bbox_wh_ratio':
show_bbox_wh_ratio(args, fig_set, class_name, class_bbox_ratio)
elif args.func == 'show_bbox_area':
show_bbox_area(args, fig_set, area_rule, class_name, bbox_area_num)
else:
raise RuntimeError(
'Please enter the correct func name, e.g., show_bbox_num')
if __name__ == '__main__':
main()