moco-v3/vits.py

94 lines
3.1 KiB
Python
Raw Normal View History

2021-06-24 03:44:50 -07:00
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn as nn
from functools import partial
from timm.models.vision_transformer import VisionTransformer, _cfg
__all__ = [
'vit_small',
'vit_base',
'vit_large',
2021-06-27 03:22:50 -07:00
'vit_huge',
2021-06-24 03:44:50 -07:00
]
2021-06-27 03:22:50 -07:00
class VisionTransformerMoCo(VisionTransformer):
def __init__(self, stop_grad_conv1=False, **kwargs):
super().__init__(**kwargs)
self.stop_grad_conv1 = stop_grad_conv1
def forward_features(self, x):
x = self.patch_embed(x)
# Add stop-grad after conv1
if self.stop_grad_conv1:
x = x.detach()
cls_token = self.cls_token.expand(x.shape[0], -1, -1)
if self.dist_token is None:
x = torch.cat((cls_token, x), dim=1)
else:
x = torch.cat((cls_token, self.dist_token.expand(x.shape[0], -1, -1), x), dim=1)
x = self.pos_drop(x + self.pos_embed)
x = self.blocks(x)
x = self.norm(x)
if self.dist_token is None:
return self.pre_logits(x[:, 0])
else:
return x[:, 0], x[:, 1]
def build_pos_embedding_2d_sincos(grid_size, hidden_dim, temperature):
grid_h = torch.arange(grid_size, dtype=torch.float32)
grid_w = torch.arange(grid_size, dtype=torch.float32)
grid_w, grid_h = torch.meshgrid(grid_w, grid_h)
assert hidden_dim % 4 == 0, 'Hidden dimension must be an even number for position embedding.'
pos_dim = hidden_dim // 4
omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim
omega = 1. / (temperature**omega)
out_w = torch.einsum('m,d->md', [grid_w.flatten(), omega])
out_h = torch.einsum('m,d->md', [grid_h.flatten(), omega])
pos_emb = torch.cat([torch.sin(out_w), torch.cos(out_w), torch.sin(out_h), torch.cos(out_h)], dim=1)[:, None, :]
p = torch.zeros([1, 1, hidden_dim], dtype=torch.float32)
pos_emb = torch.cat([p, pos_emb], dim=0)
return pos_emb
def vit_small(**kwargs):
model = VisionTransformerMoCo(
2021-06-24 03:44:50 -07:00
patch_size=16, embed_dim=384, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
model.default_cfg = _cfg()
return model
2021-06-27 03:22:50 -07:00
def vit_base(**kwargs):
model = VisionTransformerMoCo(
2021-06-24 03:44:50 -07:00
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
model.default_cfg = _cfg()
return model
2021-06-27 03:22:50 -07:00
def vit_large(**kwargs):
model = VisionTransformerMoCo(
2021-06-24 03:44:50 -07:00
patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
model.default_cfg = _cfg()
2021-06-25 05:49:34 -07:00
return model
2021-06-27 03:22:50 -07:00
def vit_huge(**kwargs):
model = VisionTransformerMoCo(
2021-06-25 05:49:34 -07:00
patch_size=16, embed_dim=1280, depth=32, num_heads=16, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
model.default_cfg = _cfg()
2021-06-24 03:44:50 -07:00
return model