#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import builtins import math import os import random import shutil import time import warnings from functools import partial import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.distributed as dist import torch.optim import torch.multiprocessing as mp import torch.utils.data import torch.utils.data.distributed import torchvision.transforms as transforms import torchvision.datasets as datasets import torchvision.models as torchvision_models from torch.utils.tensorboard import SummaryWriter import moco.builder import moco.loader import moco.optimizer import vits torchvision_model_names = sorted(name for name in torchvision_models.__dict__ if name.islower() and not name.startswith("__") and callable(torchvision_models.__dict__[name])) model_names = ['vit_small', 'vit_base', 'vit_conv_small', 'vit_conv_base'] + torchvision_model_names parser = argparse.ArgumentParser(description='MoCo ImageNet Pre-Training') parser.add_argument('data', metavar='DIR', help='path to dataset') parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet50', choices=model_names, help='model architecture: ' + ' | '.join(model_names) + ' (default: resnet50)') parser.add_argument('-j', '--workers', default=32, type=int, metavar='N', help='number of data loading workers (default: 32)') parser.add_argument('--epochs', default=100, type=int, metavar='N', help='number of total epochs to run') parser.add_argument('--start-epoch', default=0, type=int, metavar='N', help='manual epoch number (useful on restarts)') parser.add_argument('-b', '--batch-size', default=4096, type=int, metavar='N', help='mini-batch size (default: 4096), this is the total ' 'batch size of all GPUs on the current node when ' 'using Data Parallel or Distributed Data Parallel') parser.add_argument('--lr', '--learning-rate', default=0.6, type=float, metavar='LR', help='initial (base) learning rate', dest='lr') parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum') parser.add_argument('--wd', '--weight-decay', default=1e-6, type=float, metavar='W', help='weight decay (default: 1e-6)', dest='weight_decay') parser.add_argument('-p', '--print-freq', default=10, type=int, metavar='N', help='print frequency (default: 10)') parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') parser.add_argument('--world-size', default=-1, type=int, help='number of nodes for distributed training') parser.add_argument('--rank', default=-1, type=int, help='node rank for distributed training') parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str, help='url used to set up distributed training') parser.add_argument('--dist-backend', default='nccl', type=str, help='distributed backend') parser.add_argument('--seed', default=None, type=int, help='seed for initializing training. ') parser.add_argument('--gpu', default=None, type=int, help='GPU id to use.') parser.add_argument('--multiprocessing-distributed', action='store_true', help='Use multi-processing distributed training to launch ' 'N processes per node, which has N GPUs. This is the ' 'fastest way to use PyTorch for either single node or ' 'multi node data parallel training') # moco specific configs: parser.add_argument('--moco-dim', default=256, type=int, help='feature dimension (default: 256)') parser.add_argument('--moco-mlp-dim', default=4096, type=int, help='hidden dimension in MLPs (default: 4096)') parser.add_argument('--moco-m', default=0.99, type=float, help='moco momentum of updating momentum encoder (default: 0.99)') parser.add_argument('--moco-m-cos', action='store_true', help='gradually increase moco momentum to 1 with a ' 'half-cycle cosine schedule') parser.add_argument('--moco-t', default=1.0, type=float, help='softmax temperature (default: 1.0)') # vit specific configs: parser.add_argument('--stop-grad-conv1', action='store_true', help='stop-grad after first conv, or patch embedding') # other upgrades parser.add_argument('--optimizer', default='lars', type=str, choices=['lars', 'adamw'], help='optimizer used (default: lars)') parser.add_argument('--warmup-epochs', default=10, type=int, metavar='N', help='number of warmup epochs') parser.add_argument('--crop-min', default=0.08, type=float, help='minimum scale for random cropping (default: 0.2)') def main(): args = parser.parse_args() if args.seed is not None: random.seed(args.seed) torch.manual_seed(args.seed) cudnn.deterministic = True warnings.warn('You have chosen to seed training. ' 'This will turn on the CUDNN deterministic setting, ' 'which can slow down your training considerably! ' 'You may see unexpected behavior when restarting ' 'from checkpoints.') if args.gpu is not None: warnings.warn('You have chosen a specific GPU. This will completely ' 'disable data parallelism.') if args.dist_url == "env://" and args.world_size == -1: args.world_size = int(os.environ["WORLD_SIZE"]) args.distributed = args.world_size > 1 or args.multiprocessing_distributed ngpus_per_node = torch.cuda.device_count() if args.multiprocessing_distributed: # Since we have ngpus_per_node processes per node, the total world_size # needs to be adjusted accordingly args.world_size = ngpus_per_node * args.world_size # Use torch.multiprocessing.spawn to launch distributed processes: the # main_worker process function mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args)) else: # Simply call main_worker function main_worker(args.gpu, ngpus_per_node, args) def main_worker(gpu, ngpus_per_node, args): args.gpu = gpu # suppress printing if not first GPU on each node if args.multiprocessing_distributed and (args.gpu != 0 or args.rank != 0): def print_pass(*args): pass builtins.print = print_pass if args.gpu is not None: print("Use GPU: {} for training".format(args.gpu)) if args.distributed: if args.dist_url == "env://" and args.rank == -1: args.rank = int(os.environ["RANK"]) if args.multiprocessing_distributed: # For multiprocessing distributed training, rank needs to be the # global rank among all the processes args.rank = args.rank * ngpus_per_node + gpu dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank) torch.distributed.barrier() # create model print("=> creating model '{}'".format(args.arch)) if args.arch.startswith('vit'): model = moco.builder.MoCo_ViT( partial(vits.__dict__[args.arch], stop_grad_conv1=args.stop_grad_conv1), args.moco_dim, args.moco_mlp_dim, args.moco_t) else: model = moco.builder.MoCo_ResNet( partial(torchvision_models.__dict__[args.arch], zero_init_residual=True), args.moco_dim, args.moco_mlp_dim, args.moco_t) # infer learning rate before changing batch size args.lr = args.lr * args.batch_size / 256 if not torch.cuda.is_available(): print('using CPU, this will be slow') elif args.distributed: # apply SyncBN model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model) # For multiprocessing distributed, DistributedDataParallel constructor # should always set the single device scope, otherwise, # DistributedDataParallel will use all available devices. if args.gpu is not None: torch.cuda.set_device(args.gpu) model.cuda(args.gpu) # When using a single GPU per process and per # DistributedDataParallel, we need to divide the batch size # ourselves based on the total number of GPUs we have args.batch_size = int(args.batch_size / args.world_size) args.workers = int((args.workers + ngpus_per_node - 1) / ngpus_per_node) model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu]) else: model.cuda() # DistributedDataParallel will divide and allocate batch_size to all # available GPUs if device_ids are not set model = torch.nn.parallel.DistributedDataParallel(model) elif args.gpu is not None: torch.cuda.set_device(args.gpu) model = model.cuda(args.gpu) # comment out the following line for debugging raise NotImplementedError("Only DistributedDataParallel is supported.") else: # AllGather/rank implementation in this code only supports DistributedDataParallel. raise NotImplementedError("Only DistributedDataParallel is supported.") print(model) # print model after SyncBatchNorm if args.optimizer == 'lars': optimizer = moco.optimizer.LARS(model.parameters(), args.lr, weight_decay=args.weight_decay, momentum=args.momentum) elif args.optimizer == 'adamw': optimizer = torch.optim.AdamW(model.parameters(), args.lr, weight_decay=args.weight_decay) scaler = torch.cuda.amp.GradScaler() summary_writer = SummaryWriter() if args.rank == 0 else None # optionally resume from a checkpoint if args.resume: if os.path.isfile(args.resume): print("=> loading checkpoint '{}'".format(args.resume)) if args.gpu is None: checkpoint = torch.load(args.resume) else: # Map model to be loaded to specified single gpu. loc = 'cuda:{}'.format(args.gpu) checkpoint = torch.load(args.resume, map_location=loc) args.start_epoch = checkpoint['epoch'] model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) scaler.load_state_dict(checkpoint['scaler']) print("=> loaded checkpoint '{}' (epoch {})" .format(args.resume, checkpoint['epoch'])) else: print("=> no checkpoint found at '{}'".format(args.resume)) cudnn.benchmark = True # Data loading code traindir = os.path.join(args.data, 'train') normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # follow BYOL's augmentation recipe: https://arxiv.org/abs/2006.07733 augmentation1 = [ transforms.RandomResizedCrop(224, scale=(args.crop_min, 1.)), transforms.RandomApply([ transforms.ColorJitter(0.4, 0.4, 0.2, 0.1) # not strengthened ], p=0.8), transforms.RandomGrayscale(p=0.2), transforms.RandomApply([moco.loader.GaussianBlur([.1, 2.])], p=1.0), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize ] augmentation2 = [ transforms.RandomResizedCrop(224, scale=(args.crop_min, 1.)), transforms.RandomApply([ transforms.ColorJitter(0.4, 0.4, 0.2, 0.1) # not strengthened ], p=0.8), transforms.RandomGrayscale(p=0.2), transforms.RandomApply([moco.loader.GaussianBlur([.1, 2.])], p=0.1), transforms.RandomApply([moco.loader.Solarize()], p=0.2), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize ] train_dataset = datasets.ImageFolder( traindir, moco.loader.TwoCropsTransform(transforms.Compose(augmentation1), transforms.Compose(augmentation2))) if args.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset) else: train_sampler = None train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None), num_workers=args.workers, pin_memory=True, sampler=train_sampler, drop_last=True) for epoch in range(args.start_epoch, args.epochs): if args.distributed: train_sampler.set_epoch(epoch) # train for one epoch train(train_loader, model, optimizer, scaler, summary_writer, epoch, args) if not args.multiprocessing_distributed or (args.multiprocessing_distributed and args.rank == 0): # only the first GPU saves checkpoint save_checkpoint({ 'epoch': epoch + 1, 'arch': args.arch, 'state_dict': model.state_dict(), 'optimizer' : optimizer.state_dict(), 'scaler': scaler.state_dict(), }, is_best=False, filename='checkpoint_%04d.pth.tar' % epoch) if args.rank == 0: summary_writer.close() def train(train_loader, model, optimizer, scaler, summary_writer, epoch, args): batch_time = AverageMeter('Time', ':6.3f') data_time = AverageMeter('Data', ':6.3f') learning_rates = AverageMeter('LR', ':.4e') losses = AverageMeter('Loss', ':.4e') progress = ProgressMeter( len(train_loader), [batch_time, data_time, learning_rates, losses], prefix="Epoch: [{}]".format(epoch)) # switch to train mode model.train() end = time.time() iters_per_epoch = len(train_loader) moco_m = args.moco_m for i, (images, _) in enumerate(train_loader): # measure data loading time data_time.update(time.time() - end) # adjust learning rate and momentum coefficient per iteration lr = adjust_learning_rate(optimizer, epoch + i / iters_per_epoch, args) learning_rates.update(lr) if args.moco_m_cos: moco_m = adjust_moco_momentum(epoch + i / iters_per_epoch, args) if args.gpu is not None: images[0] = images[0].cuda(args.gpu, non_blocking=True) images[1] = images[1].cuda(args.gpu, non_blocking=True) # compute output with torch.cuda.amp.autocast(True): loss = model(images[0], images[1], moco_m) losses.update(loss.item(), images[0].size(0)) if args.rank == 0: summary_writer.add_scalar("loss", loss.item(), epoch * iters_per_epoch + i) # compute gradient and do SGD step optimizer.zero_grad() scaler.scale(loss).backward() scaler.step(optimizer) scaler.update() # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: progress.display(i) def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'): torch.save(state, filename) if is_best: shutil.copyfile(filename, 'model_best.pth.tar') class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self, name, fmt=':f'): self.name = name self.fmt = fmt self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def __str__(self): fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})' return fmtstr.format(**self.__dict__) class ProgressMeter(object): def __init__(self, num_batches, meters, prefix=""): self.batch_fmtstr = self._get_batch_fmtstr(num_batches) self.meters = meters self.prefix = prefix def display(self, batch): entries = [self.prefix + self.batch_fmtstr.format(batch)] entries += [str(meter) for meter in self.meters] print('\t'.join(entries)) def _get_batch_fmtstr(self, num_batches): num_digits = len(str(num_batches // 1)) fmt = '{:' + str(num_digits) + 'd}' return '[' + fmt + '/' + fmt.format(num_batches) + ']' def adjust_learning_rate(optimizer, epoch, args): """Decays the learning rate with half-cycle cosine after warmup""" if epoch < args.warmup_epochs: lr = args.lr * epoch / args.warmup_epochs else: lr = args.lr * 0.5 * (1. + math.cos(math.pi * (epoch - args.warmup_epochs) / (args.epochs - args.warmup_epochs))) for param_group in optimizer.param_groups: param_group['lr'] = lr return lr def adjust_moco_momentum(epoch, args): """Adjust moco momentum based on current epoch""" m = 1. - 0.5 * (1. + math.cos(math.pi * epoch / args.epochs)) * (1. - args.moco_m) return m if __name__ == '__main__': main()