moco-v3/moco/builder.py

158 lines
6.9 KiB
Python

# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn as nn
class MoCo(nn.Module):
"""
Build a MoCo model with: a base encoder, a momentum encoder
https://arxiv.org/abs/1911.05722
"""
def __init__(self, base_encoder, with_vit, dim=256, mlp_dim=4096, T=1.0):
"""
dim: feature dimension (default: 256)
mlp_dim: hidden dimension in MLPs (default: 4096)
m: moco momentum of updating momentum encoder (default: 0.99)
T: softmax temperature (default: 1.0)
"""
super(MoCo, self).__init__()
self.T = T
if with_vit:
self._init_encoders_with_vit(base_encoder, dim, mlp_dim)
else:
self._init_encoders_with_resnet(base_encoder, dim, mlp_dim)
for param_b, param_m in zip(self.base_encoder.parameters(), self.momentum_encoder.parameters()):
param_m.data.copy_(param_b.data) # initialize
param_m.requires_grad = False # not update by gradient
def _init_encoders_with_resnet(self, base_encoder, dim=256, mlp_dim=4096):
# create the encoders
# num_classes is the hidden MLP dimension
self.base_encoder = base_encoder(num_classes=mlp_dim)
self.momentum_encoder = base_encoder(num_classes=mlp_dim)
hidden_dim = self.base_encoder.fc.weight.shape[1]
del self.base_encoder.fc # remove original fc layer
self.base_encoder.fc = nn.Sequential(nn.Linear(hidden_dim, mlp_dim, bias=False),
nn.BatchNorm1d(mlp_dim),
nn.ReLU(inplace=True), # first layer
nn.Linear(mlp_dim, dim, bias=False),
nn.BatchNorm1d(dim, affine=False)) # second layer
del self.momentum_encoder.fc
self.momentum_encoder.fc = nn.Sequential(nn.Linear(hidden_dim, mlp_dim, bias=False),
nn.BatchNorm1d(mlp_dim),
nn.ReLU(inplace=True), # first layer
nn.Linear(mlp_dim, dim, bias=False),
nn.BatchNorm1d(dim, affine=False)) # second layer
# build a 2-layer predictor
self.predictor = nn.Sequential(nn.Linear(dim, mlp_dim, bias=False),
nn.BatchNorm1d(mlp_dim),
nn.ReLU(inplace=True), # hidden layer
nn.Linear(mlp_dim, dim)) # output layer
def _init_encoders_with_vit(self, base_encoder, dim=256, mlp_dim=4096):
# create the encoders
# num_classes is the hidden MLP dimension
self.base_encoder = base_encoder(num_classes=mlp_dim)
self.momentum_encoder = base_encoder(num_classes=mlp_dim)
hidden_dim = self.base_encoder.head.weight.shape[1]
del self.base_encoder.head # remove original fc layer
self.base_encoder.head = nn.Sequential(nn.Linear(hidden_dim, mlp_dim, bias=False),
nn.BatchNorm1d(mlp_dim),
nn.GELU(), # first layer
nn.Linear(mlp_dim, mlp_dim, bias=False),
nn.BatchNorm1d(mlp_dim),
nn.GELU(), # second layer
nn.BatchNorm1d(mlp_dim),
nn.Linear(mlp_dim, dim, bias=False),
nn.BatchNorm1d(dim, affine=False)) # third layer
del self.momentum_encoder.head
self.momentum_encoder.head = nn.Sequential(nn.Linear(hidden_dim, mlp_dim, bias=False),
nn.BatchNorm1d(mlp_dim),
nn.GELU(), # first layer
nn.Linear(mlp_dim, mlp_dim, bias=False),
nn.BatchNorm1d(mlp_dim),
nn.GELU(), # second layer
nn.BatchNorm1d(mlp_dim),
nn.Linear(mlp_dim, dim, bias=False),
nn.BatchNorm1d(dim, affine=False)) # third layer
# build a 2-layer predictor
self.predictor = nn.Sequential(nn.Linear(dim, mlp_dim, bias=False),
nn.BatchNorm1d(mlp_dim),
nn.GELU(), # hidden layer
nn.Linear(mlp_dim, dim)) # output layer
@torch.no_grad()
def _update_momentum_encoder(self, m):
"""Momentum update of the momentum encoder"""
for param_b, param_m in zip(self.base_encoder.parameters(), self.momentum_encoder.parameters()):
param_m.data = param_m.data * m + param_b.data * (1. - m)
def forward(self, im1, im2, m):
"""
Input:
im1: first views of images
im2: second views of images
m: moco momentum
Output:
logits, targets
"""
# compute features
p1 = self.predictor(self.base_encoder(im1))
p2 = self.predictor(self.base_encoder(im2))
# normalize
p1 = nn.functional.normalize(p1, dim=1)
p2 = nn.functional.normalize(p2, dim=1)
# compute momentum features as targets
with torch.no_grad(): # no gradient
self._update_momentum_encoder(m) # update the momentum encoder
t1 = self.momentum_encoder(im1)
t2 = self.momentum_encoder(im2)
# normalize
t1 = nn.functional.normalize(t1, dim=1)
t2 = nn.functional.normalize(t2, dim=1)
# gather all targets
t1 = concat_all_gather(t1)
t2 = concat_all_gather(t2)
# compute logits
# Einstein sum is more intuitive
logits1 = torch.einsum('nc,mc->nm', [p1, t2]) / self.T
logits2 = torch.einsum('nc,mc->nm', [p2, t1]) / self.T
N = logits1.shape[0] # batch size per GPU
labels = torch.arange(N, dtype=torch.long) + N * torch.distributed.get_rank()
return logits1, logits2, labels.cuda()
# utils
@torch.no_grad()
def concat_all_gather(tensor):
"""
Performs all_gather operation on the provided tensors.
*** Warning ***: torch.distributed.all_gather has no gradient.
"""
tensors_gather = [torch.ones_like(tensor)
for _ in range(torch.distributed.get_world_size())]
torch.distributed.all_gather(tensors_gather, tensor, async_op=False)
output = torch.cat(tensors_gather, dim=0)
return output