moco-v3/transfer/oxford_flowers_dataset.py

68 lines
1.9 KiB
Python

# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import print_function
from PIL import Image
from typing import Any, Callable, Optional, Tuple
import numpy as np
import os
import os.path
import pickle
import scipy.io
from torchvision.datasets.vision import VisionDataset
class Flowers(VisionDataset):
def __init__(
self,
root,
train=True,
transform=None,
target_transform=None,
download=False,
):
super(Flowers, self).__init__(root, transform=transform,
target_transform=target_transform)
base_folder = root
self.image_folder = os.path.join(base_folder, "jpg")
label_file = os.path.join(base_folder, "imagelabels.mat")
setid_file = os.path.join(base_folder, "setid.mat")
self.train = train
self.labels = scipy.io.loadmat(label_file)["labels"][0]
train_list = scipy.io.loadmat(setid_file)["trnid"][0]
val_list = scipy.io.loadmat(setid_file)["valid"][0]
test_list = scipy.io.loadmat(setid_file)["tstid"][0]
trainval_list = np.concatenate([train_list, val_list])
if self.train:
self.img_files = trainval_list
else:
self.img_files = test_list
def __getitem__(self, index):
img_name = "image_%05d.jpg" % self.img_files[index]
target = self.labels[self.img_files[index] - 1] - 1
img = Image.open(os.path.join(self.image_folder, img_name))
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target
def __len__(self):
return len(self.img_files)