object_localization_network/tests/test_models/test_backbones.py

1088 lines
37 KiB
Python

import pytest
import torch
from mmcv.ops import DeformConv2dPack
from torch.nn.modules import AvgPool2d, GroupNorm
from torch.nn.modules.batchnorm import _BatchNorm
from mmdet.models.backbones import (RegNet, Res2Net, ResNeSt, ResNet,
ResNetV1d, ResNeXt, TridentResNet)
from mmdet.models.backbones.hourglass import HourglassNet
from mmdet.models.backbones.res2net import Bottle2neck
from mmdet.models.backbones.resnest import Bottleneck as BottleneckS
from mmdet.models.backbones.resnet import BasicBlock, Bottleneck
from mmdet.models.backbones.resnext import Bottleneck as BottleneckX
from mmdet.models.backbones.trident_resnet import TridentBottleneck
from mmdet.models.utils import ResLayer
def is_block(modules):
"""Check if is ResNet building block."""
if isinstance(modules, (BasicBlock, Bottleneck, BottleneckX, Bottle2neck)):
return True
return False
def is_norm(modules):
"""Check if is one of the norms."""
if isinstance(modules, (GroupNorm, _BatchNorm)):
return True
return False
def all_zeros(modules):
"""Check if the weight(and bias) is all zero."""
weight_zero = torch.allclose(modules.weight.data,
torch.zeros_like(modules.weight.data))
if hasattr(modules, 'bias'):
bias_zero = torch.allclose(modules.bias.data,
torch.zeros_like(modules.bias.data))
else:
bias_zero = True
return weight_zero and bias_zero
def check_norm_state(modules, train_state):
"""Check if norm layer is in correct train state."""
for mod in modules:
if isinstance(mod, _BatchNorm):
if mod.training != train_state:
return False
return True
def test_resnet_basic_block():
with pytest.raises(AssertionError):
# Not implemented yet.
dcn = dict(type='DCN', deform_groups=1, fallback_on_stride=False)
BasicBlock(64, 64, dcn=dcn)
with pytest.raises(AssertionError):
# Not implemented yet.
plugins = [
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16),
position='after_conv3')
]
BasicBlock(64, 64, plugins=plugins)
with pytest.raises(AssertionError):
# Not implemented yet
plugins = [
dict(
cfg=dict(
type='GeneralizedAttention',
spatial_range=-1,
num_heads=8,
attention_type='0010',
kv_stride=2),
position='after_conv2')
]
BasicBlock(64, 64, plugins=plugins)
# test BasicBlock structure and forward
block = BasicBlock(64, 64)
assert block.conv1.in_channels == 64
assert block.conv1.out_channels == 64
assert block.conv1.kernel_size == (3, 3)
assert block.conv2.in_channels == 64
assert block.conv2.out_channels == 64
assert block.conv2.kernel_size == (3, 3)
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([1, 64, 56, 56])
# Test BasicBlock with checkpoint forward
block = BasicBlock(64, 64, with_cp=True)
assert block.with_cp
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([1, 64, 56, 56])
def test_resnet_bottleneck():
with pytest.raises(AssertionError):
# Style must be in ['pytorch', 'caffe']
Bottleneck(64, 64, style='tensorflow')
with pytest.raises(AssertionError):
# Allowed positions are 'after_conv1', 'after_conv2', 'after_conv3'
plugins = [
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16),
position='after_conv4')
]
Bottleneck(64, 16, plugins=plugins)
with pytest.raises(AssertionError):
# Need to specify different postfix to avoid duplicate plugin name
plugins = [
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16),
position='after_conv3'),
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16),
position='after_conv3')
]
Bottleneck(64, 16, plugins=plugins)
with pytest.raises(KeyError):
# Plugin type is not supported
plugins = [dict(cfg=dict(type='WrongPlugin'), position='after_conv3')]
Bottleneck(64, 16, plugins=plugins)
# Test Bottleneck with checkpoint forward
block = Bottleneck(64, 16, with_cp=True)
assert block.with_cp
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([1, 64, 56, 56])
# Test Bottleneck style
block = Bottleneck(64, 64, stride=2, style='pytorch')
assert block.conv1.stride == (1, 1)
assert block.conv2.stride == (2, 2)
block = Bottleneck(64, 64, stride=2, style='caffe')
assert block.conv1.stride == (2, 2)
assert block.conv2.stride == (1, 1)
# Test Bottleneck DCN
dcn = dict(type='DCN', deform_groups=1, fallback_on_stride=False)
with pytest.raises(AssertionError):
Bottleneck(64, 64, dcn=dcn, conv_cfg=dict(type='Conv'))
block = Bottleneck(64, 64, dcn=dcn)
assert isinstance(block.conv2, DeformConv2dPack)
# Test Bottleneck forward
block = Bottleneck(64, 16)
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([1, 64, 56, 56])
# Test Bottleneck with 1 ContextBlock after conv3
plugins = [
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16),
position='after_conv3')
]
block = Bottleneck(64, 16, plugins=plugins)
assert block.context_block.in_channels == 64
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([1, 64, 56, 56])
# Test Bottleneck with 1 GeneralizedAttention after conv2
plugins = [
dict(
cfg=dict(
type='GeneralizedAttention',
spatial_range=-1,
num_heads=8,
attention_type='0010',
kv_stride=2),
position='after_conv2')
]
block = Bottleneck(64, 16, plugins=plugins)
assert block.gen_attention_block.in_channels == 16
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([1, 64, 56, 56])
# Test Bottleneck with 1 GeneralizedAttention after conv2, 1 NonLocal2D
# after conv2, 1 ContextBlock after conv3
plugins = [
dict(
cfg=dict(
type='GeneralizedAttention',
spatial_range=-1,
num_heads=8,
attention_type='0010',
kv_stride=2),
position='after_conv2'),
dict(cfg=dict(type='NonLocal2d'), position='after_conv2'),
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16),
position='after_conv3')
]
block = Bottleneck(64, 16, plugins=plugins)
assert block.gen_attention_block.in_channels == 16
assert block.nonlocal_block.in_channels == 16
assert block.context_block.in_channels == 64
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([1, 64, 56, 56])
# Test Bottleneck with 1 ContextBlock after conv2, 2 ContextBlock after
# conv3
plugins = [
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16, postfix=1),
position='after_conv2'),
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16, postfix=2),
position='after_conv3'),
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16, postfix=3),
position='after_conv3')
]
block = Bottleneck(64, 16, plugins=plugins)
assert block.context_block1.in_channels == 16
assert block.context_block2.in_channels == 64
assert block.context_block3.in_channels == 64
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([1, 64, 56, 56])
def test_trident_resnet_bottleneck():
trident_dilations = (1, 2, 3)
test_branch_idx = 1
concat_output = True
trident_build_config = (trident_dilations, test_branch_idx, concat_output)
with pytest.raises(AssertionError):
# Style must be in ['pytorch', 'caffe']
TridentBottleneck(
*trident_build_config, inplanes=64, planes=64, style='tensorflow')
with pytest.raises(AssertionError):
# Allowed positions are 'after_conv1', 'after_conv2', 'after_conv3'
plugins = [
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16),
position='after_conv4')
]
TridentBottleneck(
*trident_build_config, inplanes=64, planes=16, plugins=plugins)
with pytest.raises(AssertionError):
# Need to specify different postfix to avoid duplicate plugin name
plugins = [
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16),
position='after_conv3'),
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16),
position='after_conv3')
]
TridentBottleneck(
*trident_build_config, inplanes=64, planes=16, plugins=plugins)
with pytest.raises(KeyError):
# Plugin type is not supported
plugins = [dict(cfg=dict(type='WrongPlugin'), position='after_conv3')]
TridentBottleneck(
*trident_build_config, inplanes=64, planes=16, plugins=plugins)
# Test Bottleneck with checkpoint forward
block = TridentBottleneck(
*trident_build_config, inplanes=64, planes=16, with_cp=True)
assert block.with_cp
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([block.num_branch, 64, 56, 56])
# Test Bottleneck style
block = TridentBottleneck(
*trident_build_config,
inplanes=64,
planes=64,
stride=2,
style='pytorch')
assert block.conv1.stride == (1, 1)
assert block.conv2.stride == (2, 2)
block = TridentBottleneck(
*trident_build_config, inplanes=64, planes=64, stride=2, style='caffe')
assert block.conv1.stride == (2, 2)
assert block.conv2.stride == (1, 1)
# Test Bottleneck forward
block = TridentBottleneck(*trident_build_config, inplanes=64, planes=16)
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([block.num_branch, 64, 56, 56])
# Test Bottleneck with 1 ContextBlock after conv3
plugins = [
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16),
position='after_conv3')
]
block = TridentBottleneck(
*trident_build_config, inplanes=64, planes=16, plugins=plugins)
assert block.context_block.in_channels == 64
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([block.num_branch, 64, 56, 56])
# Test Bottleneck with 1 GeneralizedAttention after conv2
plugins = [
dict(
cfg=dict(
type='GeneralizedAttention',
spatial_range=-1,
num_heads=8,
attention_type='0010',
kv_stride=2),
position='after_conv2')
]
block = TridentBottleneck(
*trident_build_config, inplanes=64, planes=16, plugins=plugins)
assert block.gen_attention_block.in_channels == 16
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([block.num_branch, 64, 56, 56])
# Test Bottleneck with 1 GeneralizedAttention after conv2, 1 NonLocal2D
# after conv2, 1 ContextBlock after conv3
plugins = [
dict(
cfg=dict(
type='GeneralizedAttention',
spatial_range=-1,
num_heads=8,
attention_type='0010',
kv_stride=2),
position='after_conv2'),
dict(cfg=dict(type='NonLocal2d'), position='after_conv2'),
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16),
position='after_conv3')
]
block = TridentBottleneck(
*trident_build_config, inplanes=64, planes=16, plugins=plugins)
assert block.gen_attention_block.in_channels == 16
assert block.nonlocal_block.in_channels == 16
assert block.context_block.in_channels == 64
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([block.num_branch, 64, 56, 56])
# Test Bottleneck with 1 ContextBlock after conv2, 2 ContextBlock after
# conv3
plugins = [
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16, postfix=1),
position='after_conv2'),
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16, postfix=2),
position='after_conv3'),
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16, postfix=3),
position='after_conv3')
]
block = TridentBottleneck(
*trident_build_config, inplanes=64, planes=16, plugins=plugins)
assert block.context_block1.in_channels == 16
assert block.context_block2.in_channels == 64
assert block.context_block3.in_channels == 64
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([block.num_branch, 64, 56, 56])
def test_trident_resnet_backbone():
tridentresnet_config = dict(
num_branch=3,
test_branch_idx=1,
strides=(1, 2, 2),
dilations=(1, 1, 1),
trident_dilations=(1, 2, 3),
out_indices=(2, ),
)
"""Test tridentresnet backbone."""
with pytest.raises(AssertionError):
# TridentResNet depth should be in [50, 101, 152]
TridentResNet(18, **tridentresnet_config)
with pytest.raises(AssertionError):
# In TridentResNet: num_stages == 3
TridentResNet(50, num_stages=4, **tridentresnet_config)
model = TridentResNet(50, num_stages=3, **tridentresnet_config)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 1
assert feat[0].shape == torch.Size([3, 1024, 14, 14])
def test_resnet_res_layer():
# Test ResLayer of 3 Bottleneck w\o downsample
layer = ResLayer(Bottleneck, 64, 16, 3)
assert len(layer) == 3
assert layer[0].conv1.in_channels == 64
assert layer[0].conv1.out_channels == 16
for i in range(1, len(layer)):
assert layer[i].conv1.in_channels == 64
assert layer[i].conv1.out_channels == 16
for i in range(len(layer)):
assert layer[i].downsample is None
x = torch.randn(1, 64, 56, 56)
x_out = layer(x)
assert x_out.shape == torch.Size([1, 64, 56, 56])
# Test ResLayer of 3 Bottleneck with downsample
layer = ResLayer(Bottleneck, 64, 64, 3)
assert layer[0].downsample[0].out_channels == 256
for i in range(1, len(layer)):
assert layer[i].downsample is None
x = torch.randn(1, 64, 56, 56)
x_out = layer(x)
assert x_out.shape == torch.Size([1, 256, 56, 56])
# Test ResLayer of 3 Bottleneck with stride=2
layer = ResLayer(Bottleneck, 64, 64, 3, stride=2)
assert layer[0].downsample[0].out_channels == 256
assert layer[0].downsample[0].stride == (2, 2)
for i in range(1, len(layer)):
assert layer[i].downsample is None
x = torch.randn(1, 64, 56, 56)
x_out = layer(x)
assert x_out.shape == torch.Size([1, 256, 28, 28])
# Test ResLayer of 3 Bottleneck with stride=2 and average downsample
layer = ResLayer(Bottleneck, 64, 64, 3, stride=2, avg_down=True)
assert isinstance(layer[0].downsample[0], AvgPool2d)
assert layer[0].downsample[1].out_channels == 256
assert layer[0].downsample[1].stride == (1, 1)
for i in range(1, len(layer)):
assert layer[i].downsample is None
x = torch.randn(1, 64, 56, 56)
x_out = layer(x)
assert x_out.shape == torch.Size([1, 256, 28, 28])
# Test ResLayer of 3 BasicBlock with stride=2 and downsample_first=False
layer = ResLayer(BasicBlock, 64, 64, 3, stride=2, downsample_first=False)
assert layer[2].downsample[0].out_channels == 64
assert layer[2].downsample[0].stride == (2, 2)
for i in range(len(layer) - 1):
assert layer[i].downsample is None
x = torch.randn(1, 64, 56, 56)
x_out = layer(x)
assert x_out.shape == torch.Size([1, 64, 28, 28])
def test_resnest_stem():
# Test default stem_channels
model = ResNet(50)
assert model.stem_channels == 64
assert model.conv1.out_channels == 64
assert model.norm1.num_features == 64
# Test default stem_channels, with base_channels=32
model = ResNet(50, base_channels=32)
assert model.stem_channels == 32
assert model.conv1.out_channels == 32
assert model.norm1.num_features == 32
assert model.layer1[0].conv1.in_channels == 32
# Test stem_channels=64
model = ResNet(50, stem_channels=64)
assert model.stem_channels == 64
assert model.conv1.out_channels == 64
assert model.norm1.num_features == 64
assert model.layer1[0].conv1.in_channels == 64
# Test stem_channels=64, with base_channels=32
model = ResNet(50, stem_channels=64, base_channels=32)
assert model.stem_channels == 64
assert model.conv1.out_channels == 64
assert model.norm1.num_features == 64
assert model.layer1[0].conv1.in_channels == 64
# Test stem_channels=128
model = ResNet(depth=50, stem_channels=128)
model.init_weights()
model.train()
assert model.conv1.out_channels == 128
assert model.layer1[0].conv1.in_channels == 128
# Test V1d stem_channels
model = ResNetV1d(depth=50, stem_channels=128)
model.init_weights()
model.train()
assert model.stem[0].out_channels == 64
assert model.stem[1].num_features == 64
assert model.stem[3].out_channels == 64
assert model.stem[4].num_features == 64
assert model.stem[6].out_channels == 128
assert model.stem[7].num_features == 128
assert model.layer1[0].conv1.in_channels == 128
def test_resnet_backbone():
"""Test resnet backbone."""
with pytest.raises(KeyError):
# ResNet depth should be in [18, 34, 50, 101, 152]
ResNet(20)
with pytest.raises(AssertionError):
# In ResNet: 1 <= num_stages <= 4
ResNet(50, num_stages=0)
with pytest.raises(AssertionError):
# len(stage_with_dcn) == num_stages
dcn = dict(type='DCN', deform_groups=1, fallback_on_stride=False)
ResNet(50, dcn=dcn, stage_with_dcn=(True, ))
with pytest.raises(AssertionError):
# len(stage_with_plugin) == num_stages
plugins = [
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16),
stages=(False, True, True),
position='after_conv3')
]
ResNet(50, plugins=plugins)
with pytest.raises(AssertionError):
# In ResNet: 1 <= num_stages <= 4
ResNet(50, num_stages=5)
with pytest.raises(AssertionError):
# len(strides) == len(dilations) == num_stages
ResNet(50, strides=(1, ), dilations=(1, 1), num_stages=3)
with pytest.raises(TypeError):
# pretrained must be a string path
model = ResNet(50)
model.init_weights(pretrained=0)
with pytest.raises(AssertionError):
# Style must be in ['pytorch', 'caffe']
ResNet(50, style='tensorflow')
# Test ResNet50 norm_eval=True
model = ResNet(50, norm_eval=True)
model.init_weights()
model.train()
assert check_norm_state(model.modules(), False)
# Test ResNet50 with torchvision pretrained weight
model = ResNet(depth=50, norm_eval=True)
model.init_weights('torchvision://resnet50')
model.train()
assert check_norm_state(model.modules(), False)
# Test ResNet50 with first stage frozen
frozen_stages = 1
model = ResNet(50, frozen_stages=frozen_stages)
model.init_weights()
model.train()
assert model.norm1.training is False
for layer in [model.conv1, model.norm1]:
for param in layer.parameters():
assert param.requires_grad is False
for i in range(1, frozen_stages + 1):
layer = getattr(model, f'layer{i}')
for mod in layer.modules():
if isinstance(mod, _BatchNorm):
assert mod.training is False
for param in layer.parameters():
assert param.requires_grad is False
# Test ResNet50V1d with first stage frozen
model = ResNetV1d(depth=50, frozen_stages=frozen_stages)
assert len(model.stem) == 9
model.init_weights()
model.train()
check_norm_state(model.stem, False)
for param in model.stem.parameters():
assert param.requires_grad is False
for i in range(1, frozen_stages + 1):
layer = getattr(model, f'layer{i}')
for mod in layer.modules():
if isinstance(mod, _BatchNorm):
assert mod.training is False
for param in layer.parameters():
assert param.requires_grad is False
# Test ResNet18 forward
model = ResNet(18)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == torch.Size([1, 64, 56, 56])
assert feat[1].shape == torch.Size([1, 128, 28, 28])
assert feat[2].shape == torch.Size([1, 256, 14, 14])
assert feat[3].shape == torch.Size([1, 512, 7, 7])
# Test ResNet18 with checkpoint forward
model = ResNet(18, with_cp=True)
for m in model.modules():
if is_block(m):
assert m.with_cp
# Test ResNet50 with BatchNorm forward
model = ResNet(50)
for m in model.modules():
if is_norm(m):
assert isinstance(m, _BatchNorm)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == torch.Size([1, 256, 56, 56])
assert feat[1].shape == torch.Size([1, 512, 28, 28])
assert feat[2].shape == torch.Size([1, 1024, 14, 14])
assert feat[3].shape == torch.Size([1, 2048, 7, 7])
# Test ResNet50 with layers 1, 2, 3 out forward
model = ResNet(50, out_indices=(0, 1, 2))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 3
assert feat[0].shape == torch.Size([1, 256, 56, 56])
assert feat[1].shape == torch.Size([1, 512, 28, 28])
assert feat[2].shape == torch.Size([1, 1024, 14, 14])
# Test ResNet50 with checkpoint forward
model = ResNet(50, with_cp=True)
for m in model.modules():
if is_block(m):
assert m.with_cp
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == torch.Size([1, 256, 56, 56])
assert feat[1].shape == torch.Size([1, 512, 28, 28])
assert feat[2].shape == torch.Size([1, 1024, 14, 14])
assert feat[3].shape == torch.Size([1, 2048, 7, 7])
# Test ResNet50 with GroupNorm forward
model = ResNet(
50, norm_cfg=dict(type='GN', num_groups=32, requires_grad=True))
for m in model.modules():
if is_norm(m):
assert isinstance(m, GroupNorm)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == torch.Size([1, 256, 56, 56])
assert feat[1].shape == torch.Size([1, 512, 28, 28])
assert feat[2].shape == torch.Size([1, 1024, 14, 14])
assert feat[3].shape == torch.Size([1, 2048, 7, 7])
# Test ResNet50 with 1 GeneralizedAttention after conv2, 1 NonLocal2D
# after conv2, 1 ContextBlock after conv3 in layers 2, 3, 4
plugins = [
dict(
cfg=dict(
type='GeneralizedAttention',
spatial_range=-1,
num_heads=8,
attention_type='0010',
kv_stride=2),
stages=(False, True, True, True),
position='after_conv2'),
dict(cfg=dict(type='NonLocal2d'), position='after_conv2'),
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16),
stages=(False, True, True, False),
position='after_conv3')
]
model = ResNet(50, plugins=plugins)
for m in model.layer1.modules():
if is_block(m):
assert not hasattr(m, 'context_block')
assert not hasattr(m, 'gen_attention_block')
assert m.nonlocal_block.in_channels == 64
for m in model.layer2.modules():
if is_block(m):
assert m.nonlocal_block.in_channels == 128
assert m.gen_attention_block.in_channels == 128
assert m.context_block.in_channels == 512
for m in model.layer3.modules():
if is_block(m):
assert m.nonlocal_block.in_channels == 256
assert m.gen_attention_block.in_channels == 256
assert m.context_block.in_channels == 1024
for m in model.layer4.modules():
if is_block(m):
assert m.nonlocal_block.in_channels == 512
assert m.gen_attention_block.in_channels == 512
assert not hasattr(m, 'context_block')
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == torch.Size([1, 256, 56, 56])
assert feat[1].shape == torch.Size([1, 512, 28, 28])
assert feat[2].shape == torch.Size([1, 1024, 14, 14])
assert feat[3].shape == torch.Size([1, 2048, 7, 7])
# Test ResNet50 with 1 ContextBlock after conv2, 1 ContextBlock after
# conv3 in layers 2, 3, 4
plugins = [
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16, postfix=1),
stages=(False, True, True, False),
position='after_conv3'),
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16, postfix=2),
stages=(False, True, True, False),
position='after_conv3')
]
model = ResNet(50, plugins=plugins)
for m in model.layer1.modules():
if is_block(m):
assert not hasattr(m, 'context_block')
assert not hasattr(m, 'context_block1')
assert not hasattr(m, 'context_block2')
for m in model.layer2.modules():
if is_block(m):
assert not hasattr(m, 'context_block')
assert m.context_block1.in_channels == 512
assert m.context_block2.in_channels == 512
for m in model.layer3.modules():
if is_block(m):
assert not hasattr(m, 'context_block')
assert m.context_block1.in_channels == 1024
assert m.context_block2.in_channels == 1024
for m in model.layer4.modules():
if is_block(m):
assert not hasattr(m, 'context_block')
assert not hasattr(m, 'context_block1')
assert not hasattr(m, 'context_block2')
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == torch.Size([1, 256, 56, 56])
assert feat[1].shape == torch.Size([1, 512, 28, 28])
assert feat[2].shape == torch.Size([1, 1024, 14, 14])
assert feat[3].shape == torch.Size([1, 2048, 7, 7])
# Test ResNet50 zero initialization of residual
model = ResNet(50, zero_init_residual=True)
model.init_weights()
for m in model.modules():
if isinstance(m, Bottleneck):
assert all_zeros(m.norm3)
elif isinstance(m, BasicBlock):
assert all_zeros(m.norm2)
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == torch.Size([1, 256, 56, 56])
assert feat[1].shape == torch.Size([1, 512, 28, 28])
assert feat[2].shape == torch.Size([1, 1024, 14, 14])
assert feat[3].shape == torch.Size([1, 2048, 7, 7])
# Test ResNetV1d forward
model = ResNetV1d(depth=50)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == torch.Size([1, 256, 56, 56])
assert feat[1].shape == torch.Size([1, 512, 28, 28])
assert feat[2].shape == torch.Size([1, 1024, 14, 14])
assert feat[3].shape == torch.Size([1, 2048, 7, 7])
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == torch.Size([1, 256, 56, 56])
assert feat[1].shape == torch.Size([1, 512, 28, 28])
assert feat[2].shape == torch.Size([1, 1024, 14, 14])
assert feat[3].shape == torch.Size([1, 2048, 7, 7])
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == torch.Size([1, 256, 56, 56])
assert feat[1].shape == torch.Size([1, 512, 28, 28])
assert feat[2].shape == torch.Size([1, 1024, 14, 14])
assert feat[3].shape == torch.Size([1, 2048, 7, 7])
def test_renext_bottleneck():
with pytest.raises(AssertionError):
# Style must be in ['pytorch', 'caffe']
BottleneckX(64, 64, groups=32, base_width=4, style='tensorflow')
# Test ResNeXt Bottleneck structure
block = BottleneckX(
64, 64, groups=32, base_width=4, stride=2, style='pytorch')
assert block.conv2.stride == (2, 2)
assert block.conv2.groups == 32
assert block.conv2.out_channels == 128
# Test ResNeXt Bottleneck with DCN
dcn = dict(type='DCN', deform_groups=1, fallback_on_stride=False)
with pytest.raises(AssertionError):
# conv_cfg must be None if dcn is not None
BottleneckX(
64,
64,
groups=32,
base_width=4,
dcn=dcn,
conv_cfg=dict(type='Conv'))
BottleneckX(64, 64, dcn=dcn)
# Test ResNeXt Bottleneck forward
block = BottleneckX(64, 16, groups=32, base_width=4)
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([1, 64, 56, 56])
# Test ResNeXt Bottleneck forward with plugins
plugins = [
dict(
cfg=dict(
type='GeneralizedAttention',
spatial_range=-1,
num_heads=8,
attention_type='0010',
kv_stride=2),
stages=(False, False, True, True),
position='after_conv2')
]
block = BottleneckX(64, 16, groups=32, base_width=4, plugins=plugins)
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([1, 64, 56, 56])
def test_resnext_backbone():
with pytest.raises(KeyError):
# ResNeXt depth should be in [50, 101, 152]
ResNeXt(depth=18)
# Test ResNeXt with group 32, base_width 4
model = ResNeXt(depth=50, groups=32, base_width=4)
for m in model.modules():
if is_block(m):
assert m.conv2.groups == 32
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == torch.Size([1, 256, 56, 56])
assert feat[1].shape == torch.Size([1, 512, 28, 28])
assert feat[2].shape == torch.Size([1, 1024, 14, 14])
assert feat[3].shape == torch.Size([1, 2048, 7, 7])
regnet_test_data = [
('regnetx_400mf',
dict(w0=24, wa=24.48, wm=2.54, group_w=16, depth=22,
bot_mul=1.0), [32, 64, 160, 384]),
('regnetx_800mf',
dict(w0=56, wa=35.73, wm=2.28, group_w=16, depth=16,
bot_mul=1.0), [64, 128, 288, 672]),
('regnetx_1.6gf',
dict(w0=80, wa=34.01, wm=2.25, group_w=24, depth=18,
bot_mul=1.0), [72, 168, 408, 912]),
('regnetx_3.2gf',
dict(w0=88, wa=26.31, wm=2.25, group_w=48, depth=25,
bot_mul=1.0), [96, 192, 432, 1008]),
('regnetx_4.0gf',
dict(w0=96, wa=38.65, wm=2.43, group_w=40, depth=23,
bot_mul=1.0), [80, 240, 560, 1360]),
('regnetx_6.4gf',
dict(w0=184, wa=60.83, wm=2.07, group_w=56, depth=17,
bot_mul=1.0), [168, 392, 784, 1624]),
('regnetx_8.0gf',
dict(w0=80, wa=49.56, wm=2.88, group_w=120, depth=23,
bot_mul=1.0), [80, 240, 720, 1920]),
('regnetx_12gf',
dict(w0=168, wa=73.36, wm=2.37, group_w=112, depth=19,
bot_mul=1.0), [224, 448, 896, 2240]),
]
@pytest.mark.parametrize('arch_name,arch,out_channels', regnet_test_data)
def test_regnet_backbone(arch_name, arch, out_channels):
with pytest.raises(AssertionError):
# ResNeXt depth should be in [50, 101, 152]
RegNet(arch_name + '233')
# Test RegNet with arch_name
model = RegNet(arch_name)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == torch.Size([1, out_channels[0], 56, 56])
assert feat[1].shape == torch.Size([1, out_channels[1], 28, 28])
assert feat[2].shape == torch.Size([1, out_channels[2], 14, 14])
assert feat[3].shape == torch.Size([1, out_channels[3], 7, 7])
# Test RegNet with arch
model = RegNet(arch)
assert feat[0].shape == torch.Size([1, out_channels[0], 56, 56])
assert feat[1].shape == torch.Size([1, out_channels[1], 28, 28])
assert feat[2].shape == torch.Size([1, out_channels[2], 14, 14])
assert feat[3].shape == torch.Size([1, out_channels[3], 7, 7])
def test_res2net_bottle2neck():
with pytest.raises(AssertionError):
# Style must be in ['pytorch', 'caffe']
Bottle2neck(64, 64, base_width=26, scales=4, style='tensorflow')
with pytest.raises(AssertionError):
# Scale must be larger than 1
Bottle2neck(64, 64, base_width=26, scales=1, style='pytorch')
# Test Res2Net Bottle2neck structure
block = Bottle2neck(
64, 64, base_width=26, stride=2, scales=4, style='pytorch')
assert block.scales == 4
# Test Res2Net Bottle2neck with DCN
dcn = dict(type='DCN', deform_groups=1, fallback_on_stride=False)
with pytest.raises(AssertionError):
# conv_cfg must be None if dcn is not None
Bottle2neck(
64,
64,
base_width=26,
scales=4,
dcn=dcn,
conv_cfg=dict(type='Conv'))
Bottle2neck(64, 64, dcn=dcn)
# Test Res2Net Bottle2neck forward
block = Bottle2neck(64, 16, base_width=26, scales=4)
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([1, 64, 56, 56])
def test_res2net_backbone():
with pytest.raises(KeyError):
# Res2Net depth should be in [50, 101, 152]
Res2Net(depth=18)
# Test Res2Net with scales 4, base_width 26
model = Res2Net(depth=50, scales=4, base_width=26)
for m in model.modules():
if is_block(m):
assert m.scales == 4
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == torch.Size([1, 256, 56, 56])
assert feat[1].shape == torch.Size([1, 512, 28, 28])
assert feat[2].shape == torch.Size([1, 1024, 14, 14])
assert feat[3].shape == torch.Size([1, 2048, 7, 7])
def test_hourglass_backbone():
with pytest.raises(AssertionError):
# HourglassNet's num_stacks should larger than 0
HourglassNet(num_stacks=0)
with pytest.raises(AssertionError):
# len(stage_channels) should equal len(stage_blocks)
HourglassNet(
stage_channels=[256, 256, 384, 384, 384],
stage_blocks=[2, 2, 2, 2, 2, 4])
with pytest.raises(AssertionError):
# len(stage_channels) should lagrer than downsample_times
HourglassNet(
downsample_times=5,
stage_channels=[256, 256, 384, 384, 384],
stage_blocks=[2, 2, 2, 2, 2])
# Test HourglassNet-52
model = HourglassNet(num_stacks=1)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 511, 511)
feat = model(imgs)
assert len(feat) == 1
assert feat[0].shape == torch.Size([1, 256, 128, 128])
# Test HourglassNet-104
model = HourglassNet(num_stacks=2)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 511, 511)
feat = model(imgs)
assert len(feat) == 2
assert feat[0].shape == torch.Size([1, 256, 128, 128])
assert feat[1].shape == torch.Size([1, 256, 128, 128])
def test_resnest_bottleneck():
with pytest.raises(AssertionError):
# Style must be in ['pytorch', 'caffe']
BottleneckS(64, 64, radix=2, reduction_factor=4, style='tensorflow')
# Test ResNeSt Bottleneck structure
block = BottleneckS(
64, 256, radix=2, reduction_factor=4, stride=2, style='pytorch')
assert block.avd_layer.stride == 2
assert block.conv2.channels == 256
# Test ResNeSt Bottleneck forward
block = BottleneckS(64, 16, radix=2, reduction_factor=4)
x = torch.randn(2, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([2, 64, 56, 56])
def test_resnest_backbone():
with pytest.raises(KeyError):
# ResNeSt depth should be in [50, 101, 152, 200]
ResNeSt(depth=18)
# Test ResNeSt with radix 2, reduction_factor 4
model = ResNeSt(
depth=50, radix=2, reduction_factor=4, out_indices=(0, 1, 2, 3))
model.init_weights()
model.train()
imgs = torch.randn(2, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == torch.Size([2, 256, 56, 56])
assert feat[1].shape == torch.Size([2, 512, 28, 28])
assert feat[2].shape == torch.Size([2, 1024, 14, 14])
assert feat[3].shape == torch.Size([2, 2048, 7, 7])