222 lines
6.8 KiB
Python
222 lines
6.8 KiB
Python
_base_ = [
|
|
'../_base_/datasets/coco_detection.py',
|
|
'../_base_/schedules/schedule_1x.py',
|
|
'../_base_/default_runtime.py'
|
|
]
|
|
# model settings
|
|
model = dict(
|
|
type='FasterRCNN',
|
|
pretrained='torchvision://resnet50',
|
|
backbone=dict(
|
|
type='ResNet',
|
|
depth=50,
|
|
num_stages=4,
|
|
out_indices=(0, 1, 2, 3),
|
|
frozen_stages=1,
|
|
norm_cfg=dict(type='BN', requires_grad=True),
|
|
norm_eval=True,
|
|
style='pytorch'),
|
|
neck=dict(
|
|
type='FPN',
|
|
in_channels=[256, 512, 1024, 2048],
|
|
out_channels=256,
|
|
num_outs=5),
|
|
rpn_head=dict(
|
|
type='OlnRPNHead',
|
|
in_channels=256,
|
|
feat_channels=256,
|
|
anchor_generator=dict(
|
|
type='AnchorGenerator',
|
|
# Use a single anchor per location.
|
|
scales=[8],
|
|
ratios=[1.0],
|
|
strides=[4, 8, 16, 32, 64]),
|
|
bbox_coder=dict(
|
|
type='TBLRBBoxCoder',
|
|
normalizer=1.0,),
|
|
loss_cls=dict(
|
|
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.0),
|
|
reg_decoded_bbox=True,
|
|
loss_bbox=dict(type='IoULoss', linear=True, loss_weight=10.0),
|
|
objectness_type='Centerness',
|
|
loss_objectness=dict(type='L1Loss', loss_weight=1.0),
|
|
),
|
|
roi_head=dict(
|
|
type='OlnRoIHead',
|
|
bbox_roi_extractor=dict(
|
|
type='SingleRoIExtractor',
|
|
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
|
|
out_channels=256,
|
|
featmap_strides=[4, 8, 16, 32]),
|
|
bbox_head=dict(
|
|
type='Shared2FCBBoxScoreHead',
|
|
in_channels=256,
|
|
fc_out_channels=1024,
|
|
roi_feat_size=7,
|
|
num_classes=1,
|
|
bbox_coder=dict(
|
|
type='DeltaXYWHBBoxCoder',
|
|
target_means=[0., 0., 0., 0.],
|
|
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
|
reg_class_agnostic=False,
|
|
loss_cls=dict(
|
|
type='CrossEntropyLoss',
|
|
use_sigmoid=False,
|
|
loss_weight=0.0,
|
|
),
|
|
loss_bbox=dict(type='L1Loss', loss_weight=1.0),
|
|
bbox_score_type='BoxIoU', # 'BoxIoU' or 'Centerness'
|
|
loss_bbox_score=dict(type='L1Loss', loss_weight=1.0),
|
|
)),
|
|
# model training and testing settings
|
|
train_cfg=dict(
|
|
rpn=dict(
|
|
assigner=dict(
|
|
type='MaxIoUAssigner',
|
|
pos_iou_thr=0.7,
|
|
neg_iou_thr=0.3,
|
|
min_pos_iou=0.3,
|
|
ignore_iof_thr=-1),
|
|
sampler=dict(
|
|
type='RandomSampler',
|
|
num=256,
|
|
pos_fraction=0.5,
|
|
neg_pos_ub=-1,
|
|
add_gt_as_proposals=False),
|
|
# Objectness assigner and sampler
|
|
objectness_assigner=dict(
|
|
type='MaxIoUAssigner',
|
|
pos_iou_thr=0.3,
|
|
neg_iou_thr=0.1,
|
|
min_pos_iou=0.3,
|
|
ignore_iof_thr=-1),
|
|
objectness_sampler=dict(
|
|
type='RandomSampler',
|
|
num=256,
|
|
# Ratio 0 for negative samples.
|
|
pos_fraction=1.,
|
|
neg_pos_ub=-1,
|
|
add_gt_as_proposals=False),
|
|
allowed_border=0,
|
|
pos_weight=-1,
|
|
debug=False),
|
|
rpn_proposal=dict(
|
|
nms_across_levels=False,
|
|
nms_pre=2000,
|
|
nms_post=2000,
|
|
max_num=2000,
|
|
nms_thr=0.7,
|
|
min_bbox_size=0),
|
|
rcnn=dict(
|
|
assigner=dict(
|
|
type='MaxIoUAssigner',
|
|
pos_iou_thr=0.5,
|
|
neg_iou_thr=0.5,
|
|
min_pos_iou=0.5,
|
|
match_low_quality=False,
|
|
ignore_iof_thr=-1),
|
|
sampler=dict(
|
|
type='RandomSampler',
|
|
num=512,
|
|
pos_fraction=0.25,
|
|
neg_pos_ub=-1,
|
|
add_gt_as_proposals=True),
|
|
pos_weight=-1,
|
|
debug=False)),
|
|
test_cfg=dict(
|
|
rpn=dict(
|
|
nms_across_levels=False,
|
|
nms_pre=2000,
|
|
nms_post=2000,
|
|
max_num=2000,
|
|
nms_thr=0.0, # No nms
|
|
min_bbox_size=0),
|
|
rcnn=dict(
|
|
score_thr=0.0,
|
|
nms=dict(type='nms', iou_threshold=0.7),
|
|
# max_per_img should be greater enough than k of AR@k evaluation
|
|
# because the cross-dataset AR evaluation does not count those
|
|
# proposals on the 'seen' classes into the budget (k), to avoid
|
|
# evaluating recall on seen-class objects. It's recommended to use
|
|
# max_per_img=1500 or 2000 when evaluating upto AR@1000.
|
|
max_per_img=1500,
|
|
)
|
|
))
|
|
|
|
# Dataset
|
|
dataset_type = 'CocoSplitDataset'
|
|
data_root = 'data/coco/'
|
|
img_norm_cfg = dict(
|
|
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
|
train_pipeline = [
|
|
dict(type='LoadImageFromFile'),
|
|
dict(type='LoadAnnotations', with_bbox=True),
|
|
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
|
|
dict(type='RandomFlip', flip_ratio=0.5),
|
|
dict(type='Normalize', **img_norm_cfg),
|
|
dict(type='Pad', size_divisor=32),
|
|
dict(type='DefaultFormatBundle'),
|
|
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
|
|
]
|
|
test_pipeline = [
|
|
dict(type='LoadImageFromFile'),
|
|
dict(
|
|
type='MultiScaleFlipAug',
|
|
img_scale=(1333, 800),
|
|
flip=False,
|
|
transforms=[
|
|
dict(type='Resize', keep_ratio=True),
|
|
dict(type='RandomFlip'),
|
|
dict(type='Normalize', **img_norm_cfg),
|
|
dict(type='Pad', size_divisor=32),
|
|
dict(type='ImageToTensor', keys=['img']),
|
|
dict(type='Collect', keys=['img']),
|
|
])
|
|
]
|
|
data = dict(
|
|
samples_per_gpu=2,
|
|
workers_per_gpu=2,
|
|
train=dict(
|
|
is_class_agnostic=True,
|
|
train_class='voc',
|
|
eval_class='nonvoc',
|
|
type=dataset_type,
|
|
pipeline=train_pipeline,
|
|
),
|
|
val=dict(
|
|
is_class_agnostic=True,
|
|
train_class='voc',
|
|
eval_class='nonvoc',
|
|
type=dataset_type,
|
|
pipeline=test_pipeline),
|
|
test=dict(
|
|
is_class_agnostic=True,
|
|
train_class='voc',
|
|
eval_class='nonvoc',
|
|
type=dataset_type,
|
|
pipeline=test_pipeline))
|
|
|
|
lr_config = dict(
|
|
policy='step',
|
|
warmup='linear',
|
|
warmup_iters=500,
|
|
warmup_ratio=0.001,
|
|
step=[6, 7])
|
|
total_epochs = 8
|
|
|
|
checkpoint_config = dict(interval=2)
|
|
# yapf:disable
|
|
log_config = dict(
|
|
interval=10,
|
|
hooks=[
|
|
dict(type='TextLoggerHook'),
|
|
dict(type='TensorboardLoggerHook')
|
|
])
|
|
# yapf:enable
|
|
dist_params = dict(backend='nccl')
|
|
log_level = 'INFO'
|
|
load_from = None
|
|
resume_from = None
|
|
workflow = [('train', 1)]
|
|
|
|
work_dir='./work_dirs/oln_box/' |