object_localization_network/configs/oln_box/oln_box.py

229 lines
6.8 KiB
Python

_base_ = [
'../_base_/datasets/coco_detection.py',
'../_base_/schedules/schedule_1x.py',
'../_base_/default_runtime.py'
]
# model settings
model = dict(
type='FasterRCNN',
pretrained='torchvision://resnet50',
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch'),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
num_outs=5),
rpn_head=dict(
type='OlnRPNHead',
in_channels=256,
feat_channels=256,
anchor_generator=dict(
type='AnchorGenerator',
# Use single anchor per location.
scales=[8],
ratios=[1.0],
strides=[4, 8, 16, 32, 64]),
bbox_coder=dict(
type='TBLRBBoxCoder',
normalizer=1.0,),
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.0),
reg_decoded_bbox=True,
loss_bbox=dict(type='IoULoss', linear=True, loss_weight=10.0),
objectness_type='Centerness',
loss_objectness=dict(type='L1Loss', loss_weight=1.0),
),
roi_head=dict(
type='OlnRoIHead',
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
out_channels=256,
featmap_strides=[4, 8, 16, 32]),
bbox_head=dict(
type='Shared2FCBBoxScoreHead',
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=1,
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0., 0., 0., 0.],
target_stds=[0.1, 0.1, 0.2, 0.2]),
reg_class_agnostic=False,
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=0.0,
),
loss_bbox=dict(type='L1Loss', loss_weight=1.0),
bbox_score_type='BoxIoU', # 'BoxIoU' or 'Centerness'
loss_bbox_score=dict(type='L1Loss', loss_weight=1.0),
)),
# model training and testing settings
train_cfg=dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False),
# Objectness assigner and sampler
objectness_assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.3,
neg_iou_thr=0.1,
min_pos_iou=0.3,
ignore_iof_thr=-1),
objectness_sampler=dict(
type='RandomSampler',
num=256,
# Ratio 0 for negative samples.
pos_fraction=1.,
neg_pos_ub=-1,
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_num=2000,
# <<<
nms_thr=0.9,
# >>>
min_bbox_size=0),
rcnn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
match_low_quality=False,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
pos_weight=-1,
debug=False)),
test_cfg=dict(
rpn=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_num=2000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
score_thr=0.0,
nms=dict(type='nms', iou_threshold=0.7),
# max_per_img should be greater enough than k of AR@k evaluation
# because the cross-dataset AR evaluation does not count those
# proposals on the 'seen' classes into the budget (k), to avoid
# evaluating recall on seen-class objects.
max_per_img=1500,
)
))
# Dataset
dataset_type = 'CocoSplitDataset'
data_root = 'data/coco/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=2,
workers_per_gpu=2,
train=dict(
# <
is_class_agnostic=True,
train_class='voc',
eval_class='nonvoc',
# >
type=dataset_type,
pipeline=train_pipeline,
),
val=dict(
# <
is_class_agnostic=True,
train_class='voc',
eval_class='nonvoc',
# >
type=dataset_type,
pipeline=test_pipeline),
test=dict(
# <
is_class_agnostic=True,
train_class='voc',
eval_class='nonvoc',
# >
type=dataset_type,
pipeline=test_pipeline))
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[6, 7])
total_epochs = 8
checkpoint_config = dict(interval=2)
# yapf:disable
log_config = dict(
interval=10,
hooks=[
dict(type='TextLoggerHook'),
dict(type='TensorboardLoggerHook')
])
# yapf:enable
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = None
resume_from = None
workflow = [('train', 1)]
work_dir='./work_dirs/oln_box_rpnnms09/'