%% Etract IDE features for CUHK03 clear;clc; addpath('../caffe/matlab/'); addpath(genpath('utils/')); % load model and creat network caffe.set_device(0); caffe.set_mode_gpu(); netname = 'ResNet_50'; % network: CaffeNet or ResNet_50 or googlenet detected_or_labeled = 'detected'; %detected or labeled % set your path to the prototxt and model model = ['../models/CUHK03/' netname '/' netname '_test.prototxt']; weights = ['../output/CUHK03_train/' netname '_IDE_' detected_or_labeled '_iter_75000.caffemodel']; net = caffe.Net(model, weights, 'test'); if strcmp(netname, 'ResNet_50') im_size = 224; feat_dim = 2048; elseif strcmp(netname, 'CaffeNet') im_size = 227; feat_dim = 1024; else im_size = 227; feat_dim = 1024; end % mean data mean_data = importdata('../caffe/matlab/+caffe/imagenet/ilsvrc_2012_mean.mat'); image_mean = mean_data; off = floor((size(image_mean,1) - im_size)/2)+1; image_mean = image_mean(off:off+im_size-1, off:off+im_size-1, :); ef_path = {['data/CUHK03/cuhk03_' detected_or_labeled '/']}; if ~exist('feat/CUHK03/') mkdir('feat/CUHK03/') end % extract features img_path = ef_path{1}; img_file = dir([img_path '*.png']); feat = single(zeros(feat_dim, length(img_file))); for n = 1:length(img_file) if mod(n, 1000) ==0 fprintf('%d/%d\n',n, length(img_file)) end img_name = [img_path img_file(n).name]; im = imread(img_name); im = prepare_img( im, image_mean, im_size); feat_img = net.forward({im}); feat(:, n) = single(feat_img{1}(:)); end save(['feat/CUHK03/' netname '_IDE_' detected_or_labeled '.mat'], 'feat'); feat = []; caffe.reset_all();