name: "CaffeNet" layer { name: "data" type: "ImageData" top: "data" top: "label" include { phase: TRAIN } transform_param { crop_size: 227 mean_value: 104 mean_value: 117 mean_value: 124 mirror: true } image_data_param { source: "evaluation/data/CUHK03/train_cuhk03_labeled.txt" root_folder: "evaluation/data/CUHK03/" shuffle: true new_height: 227 new_width: 227 is_color: true batch_size: 64 } } layer { name: "conv1" type: "Convolution" bottom: "data" top: "conv1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 96 kernel_size: 11 # pad: 5 stride: 4 } } layer { name: "relu1" type: "ReLU" bottom: "conv1" top: "conv1" } layer { name: "pool1" type: "Pooling" bottom: "conv1" top: "pool1" pooling_param { pool: MAX kernel_size: 3 #pad: 1 stride: 2 } } layer { name: "norm1" type: "LRN" bottom: "pool1" top: "norm1" lrn_param { local_size: 5 alpha: 0.0001 beta: 0.75 } } layer { name: "conv2" type: "Convolution" bottom: "norm1" top: "conv2" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 256 kernel_size: 5 pad: 2 group: 2 } } layer { name: "relu2" type: "ReLU" bottom: "conv2" top: "conv2" } layer { name: "pool2" type: "Pooling" bottom: "conv2" top: "pool2" pooling_param { pool: MAX kernel_size: 3 #pad: 1 stride: 2 } } layer { name: "norm2" type: "LRN" bottom: "pool2" top: "norm2" lrn_param { local_size: 5 alpha: 0.0001 beta: 0.75 } } layer { name: "conv3" type: "Convolution" bottom: "norm2" top: "conv3" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 384 kernel_size: 3 pad: 1 } } layer { name: "relu3" type: "ReLU" bottom: "conv3" top: "conv3" } layer { name: "conv4" type: "Convolution" bottom: "conv3" top: "conv4" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 384 kernel_size: 3 pad: 1 group: 2 } } layer { name: "relu4" type: "ReLU" bottom: "conv4" top: "conv4" } layer { name: "conv5" type: "Convolution" bottom: "conv4" top: "conv5" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 256 kernel_size: 3 pad: 1 group: 2 } } layer { name: "relu5" type: "ReLU" bottom: "conv5" top: "conv5" } layer { name: "pool5" type: "Pooling" bottom: "conv5" top: "pool5" pooling_param { pool: MAX kernel_size: 3 stride: 2 } } layer { name: "fc6_1" type: "InnerProduct" bottom: "pool5" top: "fc6_1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } inner_product_param { num_output: 1024 weight_filler { type: "gaussian" std: 0.005 } bias_filler { type: "constant" value: 1 } } } layer { name: "relu6" type: "ReLU" bottom: "fc6_1" top: "fc6_1" } layer { name: "drop6" type: "Dropout" bottom: "fc6_1" top: "fc6_1" dropout_param { dropout_ratio: 0.5 } } layer { name: "fc7_1" type: "InnerProduct" bottom: "fc6_1" top: "fc7_1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } inner_product_param { num_output: 1024 weight_filler { type: "gaussian" std: 0.005 } bias_filler { type: "constant" value: 1 } } } layer { name: "relu7" type: "ReLU" bottom: "fc7_1" top: "fc7_1" } layer { name: "drop7" type: "Dropout" bottom: "fc7_1" top: "fc7_1" dropout_param { dropout_ratio: 0.5 } } layer { name: "fc8_" type: "InnerProduct" bottom: "fc7_1" top: "fc8_" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } inner_product_param { num_output: 767 weight_filler { type: "gaussian" std: 0.001 } bias_filler { type: "constant" value: 0 } } } layer { name: "loss" type: "SoftmaxWithLoss" bottom: "fc8_" bottom: "label" top: "loss" propagate_down: 1 propagate_down: 0 } layer { name: "accuracy" type: "Accuracy" bottom: "fc8_" bottom: "label" top: "accuracy" include { phase: TEST } }