person-re-ranking/evaluation/Market_1501_extract_feature.m

61 lines
1.7 KiB
Matlab

%% Etract IDE features
clear;clc;
addpath('../caffe/matlab/');
addpath(genpath('utils/'));
% load model and creat network
caffe.set_device(0);
caffe.set_mode_gpu();
netname = 'ResNet_50'; % network: CaffeNet or ResNet_50 or googlenet
% set your path to the prototxt and model
model = ['../models/Market-1501/' netname '/' netname '_test.prototxt'];
weights = ['../output/Market-1501_train/' netname '_IDE_iter_50000.caffemodel'];
net = caffe.Net(model, weights, 'test');
if strcmp(netname, 'ResNet_50')
im_size = 224;
feat_dim = 2048;
elseif strcmp(netname, 'CaffeNet')
im_size = 227;
feat_dim = 4096;
else
im_size = 227;
feat_dim = 1024;
end
% mean data
mean_data = importdata('../caffe/matlab/+caffe/imagenet/ilsvrc_2012_mean.mat');
image_mean = mean_data;
off = floor((size(image_mean,1) - im_size)/2)+1;
image_mean = image_mean(off:off+im_size-1, off:off+im_size-1, :);
ef_path = {'data/Market-1501/bounding_box_train/', 'data/Market-1501/bounding_box_test/', 'data/Market-1501/query/'};
ef_name = {'train', 'test', 'query'};
if ~exist('feat/Market-1501/')
mkdir('featMarket-1501/')
end
% extract features
for i = 1:3
img_path = ef_path{i};
img_file = dir([img_path '*.jpg']);
feat = single(zeros(feat_dim, length(img_file)));
for n = 1:length(img_file)
if mod(n, 1000) ==0
fprintf('%s: %d/%d\n',ef_name{i}, n, length(img_file))
end
img_name = [img_path img_file(n).name];
im = imread(img_name);
im = prepare_img( im, image_mean, im_size);
feat_img = net.forward({im});
feat(:, n) = single(feat_img{1}(:));
end
save(['feat/Market-1501/' netname '_IDE_' ef_name{i} '.mat'], 'feat');
feat = [];
end
caffe.reset_all();