person-re-ranking/caffe/examples/cifar10/convert_cifar_data.cpp

111 lines
3.6 KiB
C++

//
// This script converts the CIFAR dataset to the leveldb format used
// by caffe to perform classification.
// Usage:
// convert_cifar_data input_folder output_db_file
// The CIFAR dataset could be downloaded at
// http://www.cs.toronto.edu/~kriz/cifar.html
#include <fstream> // NOLINT(readability/streams)
#include <string>
#include "boost/scoped_ptr.hpp"
#include "glog/logging.h"
#include "google/protobuf/text_format.h"
#include "stdint.h"
#include "caffe/proto/caffe.pb.h"
#include "caffe/util/db.hpp"
#include "caffe/util/format.hpp"
using caffe::Datum;
using boost::scoped_ptr;
using std::string;
namespace db = caffe::db;
const int kCIFARSize = 32;
const int kCIFARImageNBytes = 3072;
const int kCIFARBatchSize = 10000;
const int kCIFARTrainBatches = 5;
void read_image(std::ifstream* file, int* label, char* buffer) {
char label_char;
file->read(&label_char, 1);
*label = label_char;
file->read(buffer, kCIFARImageNBytes);
return;
}
void convert_dataset(const string& input_folder, const string& output_folder,
const string& db_type) {
scoped_ptr<db::DB> train_db(db::GetDB(db_type));
train_db->Open(output_folder + "/cifar10_train_" + db_type, db::NEW);
scoped_ptr<db::Transaction> txn(train_db->NewTransaction());
// Data buffer
int label;
char str_buffer[kCIFARImageNBytes];
Datum datum;
datum.set_channels(3);
datum.set_height(kCIFARSize);
datum.set_width(kCIFARSize);
LOG(INFO) << "Writing Training data";
for (int fileid = 0; fileid < kCIFARTrainBatches; ++fileid) {
// Open files
LOG(INFO) << "Training Batch " << fileid + 1;
string batchFileName = input_folder + "/data_batch_"
+ caffe::format_int(fileid+1) + ".bin";
std::ifstream data_file(batchFileName.c_str(),
std::ios::in | std::ios::binary);
CHECK(data_file) << "Unable to open train file #" << fileid + 1;
for (int itemid = 0; itemid < kCIFARBatchSize; ++itemid) {
read_image(&data_file, &label, str_buffer);
datum.set_label(label);
datum.set_data(str_buffer, kCIFARImageNBytes);
string out;
CHECK(datum.SerializeToString(&out));
txn->Put(caffe::format_int(fileid * kCIFARBatchSize + itemid, 5), out);
}
}
txn->Commit();
train_db->Close();
LOG(INFO) << "Writing Testing data";
scoped_ptr<db::DB> test_db(db::GetDB(db_type));
test_db->Open(output_folder + "/cifar10_test_" + db_type, db::NEW);
txn.reset(test_db->NewTransaction());
// Open files
std::ifstream data_file((input_folder + "/test_batch.bin").c_str(),
std::ios::in | std::ios::binary);
CHECK(data_file) << "Unable to open test file.";
for (int itemid = 0; itemid < kCIFARBatchSize; ++itemid) {
read_image(&data_file, &label, str_buffer);
datum.set_label(label);
datum.set_data(str_buffer, kCIFARImageNBytes);
string out;
CHECK(datum.SerializeToString(&out));
txn->Put(caffe::format_int(itemid, 5), out);
}
txn->Commit();
test_db->Close();
}
int main(int argc, char** argv) {
FLAGS_alsologtostderr = 1;
if (argc != 4) {
printf("This script converts the CIFAR dataset to the leveldb format used\n"
"by caffe to perform classification.\n"
"Usage:\n"
" convert_cifar_data input_folder output_folder db_type\n"
"Where the input folder should contain the binary batch files.\n"
"The CIFAR dataset could be downloaded at\n"
" http://www.cs.toronto.edu/~kriz/cifar.html\n"
"You should gunzip them after downloading.\n");
} else {
google::InitGoogleLogging(argv[0]);
convert_dataset(string(argv[1]), string(argv[2]), string(argv[3]));
}
return 0;
}