2021-03-15 03:08:56 +08:00
# (Tensorflow) EfficientNet
2021-03-12 00:52:13 +08:00
**EfficientNet** is a convolutional neural network architecture and scaling method that uniformly scales all dimensions of depth/width/resolution using a *compound coefficient* . Unlike conventional practice that arbitrary scales these factors, the EfficientNet scaling method uniformly scales network width, depth, and resolution with a set of fixed scaling coefficients. For example, if we want to use $2^N$ times more computational resources, then we can simply increase the network depth by $\alpha ^ N$, width by $\beta ^ N$, and image size by $\gamma ^ N$, where $\alpha, \beta, \gamma$ are constant coefficients determined by a small grid search on the original small model. EfficientNet uses a compound coefficient $\phi$ to uniformly scales network width, depth, and resolution in a principled way.
The compound scaling method is justified by the intuition that if the input image is bigger, then the network needs more layers to increase the receptive field and more channels to capture more fine-grained patterns on the bigger image.
The base EfficientNet-B0 network is based on the inverted bottleneck residual blocks of [MobileNetV2 ](https://paperswithcode.com/method/mobilenetv2 ), in addition to [squeeze-and-excitation blocks ](https://paperswithcode.com/method/squeeze-and-excitation-block ).
2021-03-15 03:08:56 +08:00
The weights from this model were ported from [Tensorflow/TPU ](https://github.com/tensorflow/tpu ).
2021-03-12 00:52:13 +08:00
## How do I use this model on an image?
To load a pretrained model:
```python
import timm
2021-03-13 02:38:10 +08:00
model = timm.create_model('tf_efficientnet_b0', pretrained=True)
2021-03-12 00:52:13 +08:00
model.eval()
```
To load and preprocess the image:
```python
import urllib
from PIL import Image
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
config = resolve_data_config({}, model=model)
transform = create_transform(**config)
url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
urllib.request.urlretrieve(url, filename)
img = Image.open(filename).convert('RGB')
tensor = transform(img).unsqueeze(0) # transform and add batch dimension
```
To get the model predictions:
```python
import torch
with torch.no_grad():
out = model(tensor)
probabilities = torch.nn.functional.softmax(out[0], dim=0)
print(probabilities.shape)
# prints: torch.Size([1000])
```
To get the top-5 predictions class names:
```python
# Get imagenet class mappings
url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
urllib.request.urlretrieve(url, filename)
with open("imagenet_classes.txt", "r") as f:
categories = [s.strip() for s in f.readlines()]
# Print top categories per image
top5_prob, top5_catid = torch.topk(probabilities, 5)
for i in range(top5_prob.size(0)):
print(categories[top5_catid[i]], top5_prob[i].item())
# prints class names and probabilities like:
# [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
```
2021-03-13 02:38:10 +08:00
Replace the model name with the variant you want to use, e.g. `tf_efficientnet_b0` . You can find the IDs in the model summaries at the top of this page.
2021-03-12 00:52:13 +08:00
To extract image features with this model, follow the [timm feature extraction examples ](https://rwightman.github.io/pytorch-image-models/feature_extraction/ ), just change the name of the model you want to use.
## How do I finetune this model?
You can finetune any of the pre-trained models just by changing the classifier (the last layer).
```python
2021-03-15 03:22:59 +08:00
model = timm.create_model('tf_efficientnet_b0', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)
2021-03-12 00:52:13 +08:00
```
To finetune on your own dataset, you have to write a training loop or adapt [timm's training
script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset.
## How do I train this model?
You can follow the [timm recipe scripts ](https://rwightman.github.io/pytorch-image-models/scripts/ ) for training a new model afresh.
## Citation
```BibTeX
@misc {tan2020efficientnet,
title={EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks},
author={Mingxing Tan and Quoc V. Le},
year={2020},
eprint={1905.11946},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
<!--
2021-03-13 02:38:10 +08:00
Type: model-index
Collections:
- Name: TF EfficientNet
Paper:
Title: 'EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks'
URL: https://paperswithcode.com/paper/efficientnet-rethinking-model-scaling-for
2021-03-12 00:52:13 +08:00
Models:
2021-03-13 02:38:10 +08:00
- Name: tf_efficientnet_b0
In Collection: TF EfficientNet
2021-03-12 00:52:13 +08:00
Metadata:
2021-03-13 02:38:10 +08:00
FLOPs: 488688572
Parameters: 5290000
File Size: 21383997
2021-03-12 00:52:13 +08:00
Architecture:
- 1x1 Convolution
- Average Pooling
- Batch Normalization
- Convolution
- Dense Connections
- Dropout
- Inverted Residual Block
- Squeeze-and-Excitation Block
- Swish
Tasks:
- Image Classification
2021-03-13 02:38:10 +08:00
Training Techniques:
- AutoAugment
- Label Smoothing
- RMSProp
- Stochastic Depth
- Weight Decay
Training Data:
- ImageNet
Training Resources: TPUv3 Cloud TPU
ID: tf_efficientnet_b0
2021-03-12 00:52:13 +08:00
LR: 0.256
2021-03-13 02:38:10 +08:00
Epochs: 350
Crop Pct: '0.875'
2021-03-12 00:52:13 +08:00
Momentum: 0.9
2021-03-13 02:38:10 +08:00
Batch Size: 2048
Image Size: '224'
2021-03-12 00:52:13 +08:00
Weight Decay: 1.0e-05
Interpolation: bicubic
RMSProp Decay: 0.9
Label Smoothing: 0.1
BatchNorm Momentum: 0.99
2021-03-13 02:38:10 +08:00
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1241
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0_aa-827b6e33.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 76.85%
Top 5 Accuracy: 93.23%
- Name: tf_efficientnet_b1
2021-03-12 00:52:13 +08:00
In Collection: TF EfficientNet
Metadata:
2021-03-13 02:38:10 +08:00
FLOPs: 883633200
Parameters: 7790000
File Size: 31512534
2021-03-12 00:52:13 +08:00
Architecture:
- 1x1 Convolution
- Average Pooling
- Batch Normalization
- Convolution
- Dense Connections
- Dropout
- Inverted Residual Block
- Squeeze-and-Excitation Block
- Swish
Tasks:
- Image Classification
2021-03-13 02:38:10 +08:00
Training Techniques:
- AutoAugment
- Label Smoothing
- RMSProp
- Stochastic Depth
- Weight Decay
Training Data:
- ImageNet
ID: tf_efficientnet_b1
2021-03-12 00:52:13 +08:00
LR: 0.256
2021-03-13 02:38:10 +08:00
Epochs: 350
Crop Pct: '0.882'
2021-03-12 00:52:13 +08:00
Momentum: 0.9
2021-03-13 02:38:10 +08:00
Batch Size: 2048
Image Size: '240'
2021-03-12 00:52:13 +08:00
Weight Decay: 1.0e-05
Interpolation: bicubic
RMSProp Decay: 0.9
Label Smoothing: 0.1
BatchNorm Momentum: 0.99
2021-03-13 02:38:10 +08:00
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1251
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b1_aa-ea7a6ee0.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 78.84%
Top 5 Accuracy: 94.2%
2021-03-12 00:52:13 +08:00
- Name: tf_efficientnet_b2
2021-03-13 02:38:10 +08:00
In Collection: TF EfficientNet
2021-03-12 00:52:13 +08:00
Metadata:
FLOPs: 1234321170
2021-03-13 02:38:10 +08:00
Parameters: 9110000
File Size: 36797929
2021-03-12 00:52:13 +08:00
Architecture:
- 1x1 Convolution
- Average Pooling
- Batch Normalization
- Convolution
- Dense Connections
- Dropout
- Inverted Residual Block
- Squeeze-and-Excitation Block
- Swish
Tasks:
- Image Classification
2021-03-13 02:38:10 +08:00
Training Techniques:
- AutoAugment
- Label Smoothing
- RMSProp
- Stochastic Depth
- Weight Decay
Training Data:
- ImageNet
2021-03-12 00:52:13 +08:00
ID: tf_efficientnet_b2
LR: 0.256
2021-03-13 02:38:10 +08:00
Epochs: 350
2021-03-12 00:52:13 +08:00
Crop Pct: '0.89'
Momentum: 0.9
2021-03-13 02:38:10 +08:00
Batch Size: 2048
2021-03-12 00:52:13 +08:00
Image Size: '260'
Weight Decay: 1.0e-05
Interpolation: bicubic
RMSProp Decay: 0.9
Label Smoothing: 0.1
BatchNorm Momentum: 0.99
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1261
2021-03-13 02:38:10 +08:00
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b2_aa-60c94f97.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 80.07%
Top 5 Accuracy: 94.9%
2021-03-12 00:52:13 +08:00
- Name: tf_efficientnet_b3
2021-03-13 02:38:10 +08:00
In Collection: TF EfficientNet
2021-03-12 00:52:13 +08:00
Metadata:
FLOPs: 2275247568
2021-03-13 02:38:10 +08:00
Parameters: 12230000
File Size: 49381362
2021-03-12 00:52:13 +08:00
Architecture:
- 1x1 Convolution
- Average Pooling
- Batch Normalization
- Convolution
- Dense Connections
- Dropout
- Inverted Residual Block
- Squeeze-and-Excitation Block
- Swish
Tasks:
- Image Classification
2021-03-13 02:38:10 +08:00
Training Techniques:
- AutoAugment
- Label Smoothing
- RMSProp
- Stochastic Depth
- Weight Decay
Training Data:
- ImageNet
2021-03-12 00:52:13 +08:00
ID: tf_efficientnet_b3
LR: 0.256
2021-03-13 02:38:10 +08:00
Epochs: 350
2021-03-12 00:52:13 +08:00
Crop Pct: '0.904'
Momentum: 0.9
2021-03-13 02:38:10 +08:00
Batch Size: 2048
2021-03-12 00:52:13 +08:00
Image Size: '300'
Weight Decay: 1.0e-05
Interpolation: bicubic
RMSProp Decay: 0.9
Label Smoothing: 0.1
BatchNorm Momentum: 0.99
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1271
2021-03-13 02:38:10 +08:00
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b3_aa-84b4657e.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 81.65%
Top 5 Accuracy: 95.72%
- Name: tf_efficientnet_b4
2021-03-12 00:52:13 +08:00
In Collection: TF EfficientNet
Metadata:
2021-03-13 02:38:10 +08:00
FLOPs: 5749638672
Parameters: 19340000
File Size: 77989689
2021-03-12 00:52:13 +08:00
Architecture:
- 1x1 Convolution
- Average Pooling
- Batch Normalization
- Convolution
- Dense Connections
- Dropout
- Inverted Residual Block
- Squeeze-and-Excitation Block
- Swish
Tasks:
- Image Classification
2021-03-13 02:38:10 +08:00
Training Techniques:
- AutoAugment
- Label Smoothing
- RMSProp
- Stochastic Depth
- Weight Decay
Training Data:
- ImageNet
Training Resources: TPUv3 Cloud TPU
ID: tf_efficientnet_b4
2021-03-12 00:52:13 +08:00
LR: 0.256
2021-03-13 02:38:10 +08:00
Epochs: 350
Crop Pct: '0.922'
2021-03-12 00:52:13 +08:00
Momentum: 0.9
2021-03-13 02:38:10 +08:00
Batch Size: 2048
Image Size: '380'
2021-03-12 00:52:13 +08:00
Weight Decay: 1.0e-05
Interpolation: bicubic
RMSProp Decay: 0.9
Label Smoothing: 0.1
BatchNorm Momentum: 0.99
2021-03-13 02:38:10 +08:00
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1281
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b4_aa-818f208c.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 83.03%
Top 5 Accuracy: 96.3%
2021-03-12 00:52:13 +08:00
- Name: tf_efficientnet_b5
2021-03-13 02:38:10 +08:00
In Collection: TF EfficientNet
2021-03-12 00:52:13 +08:00
Metadata:
FLOPs: 13176501888
2021-03-13 02:38:10 +08:00
Parameters: 30390000
File Size: 122403150
2021-03-12 00:52:13 +08:00
Architecture:
- 1x1 Convolution
- Average Pooling
- Batch Normalization
- Convolution
- Dense Connections
- Dropout
- Inverted Residual Block
- Squeeze-and-Excitation Block
- Swish
Tasks:
- Image Classification
2021-03-13 02:38:10 +08:00
Training Techniques:
- AutoAugment
- Label Smoothing
- RMSProp
- Stochastic Depth
- Weight Decay
Training Data:
- ImageNet
2021-03-12 00:52:13 +08:00
ID: tf_efficientnet_b5
LR: 0.256
2021-03-13 02:38:10 +08:00
Epochs: 350
2021-03-12 00:52:13 +08:00
Crop Pct: '0.934'
Momentum: 0.9
2021-03-13 02:38:10 +08:00
Batch Size: 2048
2021-03-12 00:52:13 +08:00
Image Size: '456'
Weight Decay: 1.0e-05
Interpolation: bicubic
RMSProp Decay: 0.9
Label Smoothing: 0.1
BatchNorm Momentum: 0.99
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1291
2021-03-13 02:38:10 +08:00
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b5_ra-9a3e5369.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 83.81%
Top 5 Accuracy: 96.75%
2021-03-12 00:52:13 +08:00
- Name: tf_efficientnet_b6
2021-03-13 02:38:10 +08:00
In Collection: TF EfficientNet
2021-03-12 00:52:13 +08:00
Metadata:
FLOPs: 24180518488
2021-03-13 02:38:10 +08:00
Parameters: 43040000
File Size: 173232007
2021-03-12 00:52:13 +08:00
Architecture:
- 1x1 Convolution
- Average Pooling
- Batch Normalization
- Convolution
- Dense Connections
- Dropout
- Inverted Residual Block
- Squeeze-and-Excitation Block
- Swish
Tasks:
- Image Classification
2021-03-13 02:38:10 +08:00
Training Techniques:
- AutoAugment
- Label Smoothing
- RMSProp
- Stochastic Depth
- Weight Decay
Training Data:
- ImageNet
2021-03-12 00:52:13 +08:00
ID: tf_efficientnet_b6
LR: 0.256
2021-03-13 02:38:10 +08:00
Epochs: 350
2021-03-12 00:52:13 +08:00
Crop Pct: '0.942'
Momentum: 0.9
2021-03-13 02:38:10 +08:00
Batch Size: 2048
2021-03-12 00:52:13 +08:00
Image Size: '528'
Weight Decay: 1.0e-05
Interpolation: bicubic
RMSProp Decay: 0.9
Label Smoothing: 0.1
BatchNorm Momentum: 0.99
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1301
2021-03-13 02:38:10 +08:00
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b6_aa-80ba17e4.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 84.11%
Top 5 Accuracy: 96.89%
2021-03-12 00:52:13 +08:00
- Name: tf_efficientnet_b7
2021-03-13 02:38:10 +08:00
In Collection: TF EfficientNet
2021-03-12 00:52:13 +08:00
Metadata:
FLOPs: 48205304880
2021-03-13 02:38:10 +08:00
Parameters: 66349999
File Size: 266850607
2021-03-12 00:52:13 +08:00
Architecture:
- 1x1 Convolution
- Average Pooling
- Batch Normalization
- Convolution
- Dense Connections
- Dropout
- Inverted Residual Block
- Squeeze-and-Excitation Block
- Swish
Tasks:
- Image Classification
2021-03-13 02:38:10 +08:00
Training Techniques:
- AutoAugment
- Label Smoothing
- RMSProp
- Stochastic Depth
- Weight Decay
Training Data:
- ImageNet
2021-03-12 00:52:13 +08:00
ID: tf_efficientnet_b7
LR: 0.256
2021-03-13 02:38:10 +08:00
Epochs: 350
2021-03-12 00:52:13 +08:00
Crop Pct: '0.949'
Momentum: 0.9
2021-03-13 02:38:10 +08:00
Batch Size: 2048
2021-03-12 00:52:13 +08:00
Image Size: '600'
Weight Decay: 1.0e-05
Interpolation: bicubic
RMSProp Decay: 0.9
Label Smoothing: 0.1
BatchNorm Momentum: 0.99
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1312
2021-03-13 02:38:10 +08:00
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b7_ra-6c08e654.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 84.93%
Top 5 Accuracy: 97.2%
2021-03-12 00:52:13 +08:00
- Name: tf_efficientnet_b8
2021-03-13 02:38:10 +08:00
In Collection: TF EfficientNet
2021-03-12 00:52:13 +08:00
Metadata:
FLOPs: 80962956270
2021-03-13 02:38:10 +08:00
Parameters: 87410000
File Size: 351379853
2021-03-12 00:52:13 +08:00
Architecture:
- 1x1 Convolution
- Average Pooling
- Batch Normalization
- Convolution
- Dense Connections
- Dropout
- Inverted Residual Block
- Squeeze-and-Excitation Block
- Swish
Tasks:
- Image Classification
2021-03-13 02:38:10 +08:00
Training Techniques:
- AutoAugment
- Label Smoothing
- RMSProp
- Stochastic Depth
- Weight Decay
Training Data:
- ImageNet
2021-03-12 00:52:13 +08:00
ID: tf_efficientnet_b8
LR: 0.256
2021-03-13 02:38:10 +08:00
Epochs: 350
2021-03-12 00:52:13 +08:00
Crop Pct: '0.954'
Momentum: 0.9
2021-03-13 02:38:10 +08:00
Batch Size: 2048
2021-03-12 00:52:13 +08:00
Image Size: '672'
Weight Decay: 1.0e-05
Interpolation: bicubic
RMSProp Decay: 0.9
Label Smoothing: 0.1
BatchNorm Momentum: 0.99
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1323
2021-03-13 02:38:10 +08:00
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b8_ra-572d5dd9.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 85.35%
Top 5 Accuracy: 97.39%
2021-03-12 00:52:13 +08:00
- Name: tf_efficientnet_el
2021-03-13 02:38:10 +08:00
In Collection: TF EfficientNet
2021-03-12 00:52:13 +08:00
Metadata:
FLOPs: 9356616096
2021-03-13 02:38:10 +08:00
Parameters: 10590000
File Size: 42800271
2021-03-12 00:52:13 +08:00
Architecture:
- 1x1 Convolution
- Average Pooling
- Batch Normalization
- Convolution
- Dense Connections
- Dropout
- Inverted Residual Block
- Squeeze-and-Excitation Block
- Swish
Tasks:
- Image Classification
2021-03-13 02:38:10 +08:00
Training Data:
- ImageNet
2021-03-12 00:52:13 +08:00
ID: tf_efficientnet_el
Crop Pct: '0.904'
Image Size: '300'
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1551
2021-03-13 02:38:10 +08:00
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_el-5143854e.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 80.45%
Top 5 Accuracy: 95.17%
2021-03-12 00:52:13 +08:00
- Name: tf_efficientnet_em
2021-03-13 02:38:10 +08:00
In Collection: TF EfficientNet
2021-03-12 00:52:13 +08:00
Metadata:
FLOPs: 3636607040
2021-03-13 02:38:10 +08:00
Parameters: 6900000
File Size: 27933644
2021-03-12 00:52:13 +08:00
Architecture:
- 1x1 Convolution
- Average Pooling
- Batch Normalization
- Convolution
- Dense Connections
- Dropout
- Inverted Residual Block
- Squeeze-and-Excitation Block
- Swish
Tasks:
- Image Classification
2021-03-13 02:38:10 +08:00
Training Data:
- ImageNet
2021-03-12 00:52:13 +08:00
ID: tf_efficientnet_em
Crop Pct: '0.882'
Image Size: '240'
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1541
2021-03-13 02:38:10 +08:00
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_em-e78cfe58.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 78.71%
Top 5 Accuracy: 94.33%
2021-03-12 00:52:13 +08:00
- Name: tf_efficientnet_es
2021-03-13 02:38:10 +08:00
In Collection: TF EfficientNet
2021-03-12 00:52:13 +08:00
Metadata:
FLOPs: 2057577472
2021-03-13 02:38:10 +08:00
Parameters: 5440000
File Size: 22008479
2021-03-12 00:52:13 +08:00
Architecture:
- 1x1 Convolution
- Average Pooling
- Batch Normalization
- Convolution
- Dense Connections
- Dropout
- Inverted Residual Block
- Squeeze-and-Excitation Block
- Swish
Tasks:
- Image Classification
2021-03-13 02:38:10 +08:00
Training Data:
- ImageNet
2021-03-12 00:52:13 +08:00
ID: tf_efficientnet_es
Crop Pct: '0.875'
Image Size: '224'
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1531
2021-03-13 02:38:10 +08:00
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_es-ca1afbfe.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 77.28%
Top 5 Accuracy: 93.6%
2021-03-12 00:52:13 +08:00
- Name: tf_efficientnet_l2_ns_475
2021-03-13 02:38:10 +08:00
In Collection: TF EfficientNet
2021-03-12 00:52:13 +08:00
Metadata:
FLOPs: 217795669644
2021-03-13 02:38:10 +08:00
Parameters: 480310000
File Size: 1925950424
2021-03-12 00:52:13 +08:00
Architecture:
- 1x1 Convolution
- Average Pooling
- Batch Normalization
- Convolution
- Dense Connections
- Dropout
- Inverted Residual Block
- Squeeze-and-Excitation Block
- Swish
Tasks:
- Image Classification
2021-03-13 02:38:10 +08:00
Training Techniques:
- AutoAugment
- FixRes
- Label Smoothing
- Noisy Student
- RMSProp
- RandAugment
- Weight Decay
Training Data:
- ImageNet
- JFT-300M
Training Resources: TPUv3 Cloud TPU
2021-03-12 00:52:13 +08:00
ID: tf_efficientnet_l2_ns_475
LR: 0.128
2021-03-13 02:38:10 +08:00
Epochs: 350
2021-03-12 00:52:13 +08:00
Dropout: 0.5
Crop Pct: '0.936'
Momentum: 0.9
2021-03-13 02:38:10 +08:00
Batch Size: 2048
2021-03-12 00:52:13 +08:00
Image Size: '475'
Weight Decay: 1.0e-05
Interpolation: bicubic
RMSProp Decay: 0.9
Label Smoothing: 0.1
BatchNorm Momentum: 0.99
Stochastic Depth Survival: 0.8
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1509
2021-03-13 02:38:10 +08:00
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_l2_ns_475-bebbd00a.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 88.24%
Top 5 Accuracy: 98.55%
2021-03-12 00:52:13 +08:00
-->