pytorch-image-models/timm/layers/attention_pool2d.py

210 lines
8.5 KiB
Python
Raw Normal View History

""" Attention Pool 2D
Implementations of 2D spatial feature pooling using multi-head attention instead of average pool.
Based on idea in CLIP by OpenAI, licensed Apache 2.0
https://github.com/openai/CLIP/blob/3b473b0e682c091a9e53623eebc1ca1657385717/clip/model.py
Hacked together by / Copyright 2021 Ross Wightman
"""
from typing import Optional, Union, Tuple
import torch
import torch.nn as nn
from. config import use_fused_attn
from .helpers import to_2tuple
from .pos_embed import resample_abs_pos_embed
from .pos_embed_sincos import apply_rot_embed, RotaryEmbedding
from .weight_init import trunc_normal_
class RotAttentionPool2d(nn.Module):
""" Attention based 2D feature pooling w/ rotary (relative) pos embedding.
This is a multi-head attention based replacement for (spatial) average pooling in NN architectures.
Adapted from the AttentionPool2d in CLIP w/ rotary embedding instead of learned embed.
https://github.com/openai/CLIP/blob/3b473b0e682c091a9e53623eebc1ca1657385717/clip/model.py
NOTE: While this impl does not require a fixed feature size, performance at differeing resolutions from
train varies widely and falls off dramatically. I'm not sure if there is a way around this... -RW
"""
fused_attn: torch.jit.Final[bool]
def __init__(
self,
in_features: int,
out_features: Optional[int] = None,
ref_feat_size: Union[int, Tuple[int, int]] = 7,
embed_dim: Optional[int] = None,
head_dim: Optional[int] = 64,
num_heads: Optional[int] = None,
qkv_bias: bool = True,
qkv_separate: bool = False,
):
super().__init__()
embed_dim = embed_dim or in_features
self.in_features = in_features
self.out_features = out_features or in_features
ref_feat_size = to_2tuple(ref_feat_size)
if num_heads is not None:
assert embed_dim % num_heads == 0
head_dim = embed_dim // num_heads
else:
assert embed_dim % head_dim == 0
num_heads = embed_dim // head_dim
self.num_heads = num_heads
self.head_dim = head_dim
self.scale = self.head_dim ** -0.5
self.fused_attn = use_fused_attn()
if qkv_separate:
self.q = nn.Linear(in_features, embed_dim, bias=qkv_bias)
self.k = nn.Linear(in_features, embed_dim, bias=qkv_bias)
self.v = nn.Linear(in_features, embed_dim, bias=qkv_bias)
self.qkv = None
else:
self.qkv = nn.Linear(in_features, embed_dim * 3, bias=qkv_bias)
self.proj = nn.Linear(embed_dim, self.out_features)
self.pos_embed = RotaryEmbedding(self.head_dim, in_pixels=False, ref_feat_shape=ref_feat_size)
def init_weights(self, zero_init_last: bool = False):
if self.qkv is None:
in_features = self.q.in_features
trunc_normal_(self.q.weight, std=in_features ** -0.5)
nn.init.zeros_(self.q.bias)
trunc_normal_(self.k.weight, std=in_features ** -0.5)
nn.init.zeros_(self.k.bias)
trunc_normal_(self.v.weight, std=in_features ** -0.5)
nn.init.zeros_(self.v.bias)
else:
in_features = self.qkv.in_features
trunc_normal_(self.qkv.weight, std=in_features ** -0.5)
nn.init.zeros_(self.qkv.bias)
def forward(self, x):
B, _, H, W = x.shape
N = H * W
x = x.flatten(2).transpose(1, 2)
x = torch.cat([x.mean(1, keepdim=True), x], dim=1)
if self.qkv is None:
q = self.q(x).reshape(B, N + 1, self.num_heads, self.head_dim).transpose(1, 2)
k = self.k(x).reshape(B, N + 1, self.num_heads, self.head_dim).transpose(1, 2)
v = self.v(x).reshape(B, N + 1, self.num_heads, self.head_dim).transpose(1, 2)
else:
x = self.qkv(x).reshape(B, N + 1, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
q, k, v = x.unbind(0)
rse, rce = self.pos_embed.get_embed((H, W))
q = torch.cat([q[:, :, :1, :], apply_rot_embed(q[:, :, 1:, :], rse, rce)], dim=2).type_as(v)
k = torch.cat([k[:, :, :1, :], apply_rot_embed(k[:, :, 1:, :], rse, rce)], dim=2).type_as(v)
if self.fused_attn:
x = nn.functional.scaled_dot_product_attention(q, k, v)
else:
q = q * self.scale
attn = q @ k.transpose(-2, -1)
attn = attn.softmax(dim=-1)
x = attn @ v
x = x.transpose(1, 2).reshape(B, N + 1, -1)
x = self.proj(x)
return x[:, 0]
class AttentionPool2d(nn.Module):
""" Attention based 2D feature pooling w/ learned (absolute) pos embedding.
This is a multi-head attention based replacement for (spatial) average pooling in NN architectures.
It was based on impl in CLIP by OpenAI
https://github.com/openai/CLIP/blob/3b473b0e682c091a9e53623eebc1ca1657385717/clip/model.py
NOTE: This requires feature size upon construction and well prevent adaptive sizing of the network.
"""
fused_attn: torch.jit.Final[bool]
def __init__(
self,
in_features: int,
feat_size: Union[int, Tuple[int, int]] = 7,
out_features: Optional[int] = None,
embed_dim: Optional[int] = None,
head_dim: Optional[int] = 64,
num_heads: Optional[int] = None,
qkv_bias: bool = True,
qkv_separate: bool = False,
):
super().__init__()
embed_dim = embed_dim or in_features
self.in_features = in_features
self.out_features = out_features or in_features
if num_heads is not None:
assert embed_dim % num_heads == 0
head_dim = embed_dim // num_heads
else:
assert embed_dim % head_dim == 0
num_heads = embed_dim // head_dim
self.feat_size = to_2tuple(feat_size)
self.seq_len = self.feat_size[0] * self.feat_size[1]
self.num_heads = num_heads
self.head_dim = head_dim
self.scale = self.head_dim ** -0.5
self.fused_attn = use_fused_attn()
if qkv_separate:
self.q = nn.Linear(in_features, embed_dim, bias=qkv_bias)
self.k = nn.Linear(in_features, embed_dim, bias=qkv_bias)
self.v = nn.Linear(in_features, embed_dim, bias=qkv_bias)
self.qkv = None
else:
self.q = self.k = self.v = None
self.qkv = nn.Linear(in_features, embed_dim * 3, bias=qkv_bias)
self.proj = nn.Linear(embed_dim, self.out_features)
self.pos_embed = nn.Parameter(torch.zeros(self.seq_len + 1, in_features))
self.init_weights()
def init_weights(self, zero_init_last: bool = False):
if self.qkv is None:
in_features = self.q.in_features
trunc_normal_(self.q.weight, std=in_features ** -0.5)
nn.init.zeros_(self.q.bias)
trunc_normal_(self.k.weight, std=in_features ** -0.5)
nn.init.zeros_(self.k.bias)
trunc_normal_(self.v.weight, std=in_features ** -0.5)
nn.init.zeros_(self.v.bias)
else:
in_features = self.qkv.in_features
trunc_normal_(self.qkv.weight, std=in_features ** -0.5)
nn.init.zeros_(self.qkv.bias)
trunc_normal_(self.pos_embed, std=in_features ** -0.5)
def forward(self, x):
B, _, H, W = x.shape
N = H * W
x = x.flatten(2).transpose(1, 2)
x = torch.cat([x.mean(1, keepdim=True), x], dim=1)
if self.seq_len != N:
pos_embed = resample_abs_pos_embed(self.pos_embed.unsqueeze(0), (H, W), num_prefix_tokens=1)
else:
pos_embed = self.pos_embed.unsqueeze(0).to(x.dtype)
x = x + pos_embed
if self.qkv is None:
q = self.q(x).reshape(B, N + 1, self.num_heads, self.head_dim).transpose(1, 2)
k = self.k(x).reshape(B, N + 1, self.num_heads, self.head_dim).transpose(1, 2)
v = self.v(x).reshape(B, N + 1, self.num_heads, self.head_dim).transpose(1, 2)
else:
x = self.qkv(x).reshape(B, -1, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
q, k, v = x.unbind(0)
if self.fused_attn:
x = nn.functional.scaled_dot_product_attention(q, k, v)
else:
q = q * self.scale
attn = q @ k.transpose(-2, -1)
attn = attn.softmax(dim=-1)
x = attn @ v
x = x.transpose(1, 2).reshape(B, N + 1, -1)
x = self.proj(x)
return x[:, 0]