pytorch-image-models/benchmark.py

664 lines
26 KiB
Python
Raw Normal View History

#!/usr/bin/env python3
""" Model Benchmark Script
An inference and train step benchmark script for timm models.
Hacked together by Ross Wightman (https://github.com/rwightman)
"""
import argparse
import csv
import json
import logging
2022-07-08 06:21:29 +08:00
import time
from collections import OrderedDict
from contextlib import suppress
from functools import partial
2022-07-08 06:21:29 +08:00
import torch
import torch.nn as nn
import torch.nn.parallel
from timm.data import resolve_data_config
from timm.models import create_model, is_model, list_models, set_fast_norm
from timm.optim import create_optimizer_v2
from timm.utils import setup_default_logging, set_jit_fuser, decay_batch_step, check_batch_size_retry
has_apex = False
try:
from apex import amp
has_apex = True
except ImportError:
pass
has_native_amp = False
try:
if getattr(torch.cuda.amp, 'autocast') is not None:
has_native_amp = True
except AttributeError:
pass
try:
from deepspeed.profiling.flops_profiler import get_model_profile
has_deepspeed_profiling = True
except ImportError as e:
has_deepspeed_profiling = False
try:
from fvcore.nn import FlopCountAnalysis, flop_count_str, ActivationCountAnalysis
has_fvcore_profiling = True
except ImportError as e:
FlopCountAnalysis = None
has_fvcore_profiling = False
2022-06-08 09:01:52 +08:00
try:
from functorch.compile import memory_efficient_fusion
has_functorch = True
except ImportError as e:
has_functorch = False
if torch.cuda.is_available():
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.benchmark = True
_logger = logging.getLogger('validate')
parser = argparse.ArgumentParser(description='PyTorch Benchmark')
# benchmark specific args
parser.add_argument('--model-list', metavar='NAME', default='',
help='txt file based list of model names to benchmark')
parser.add_argument('--bench', default='both', type=str,
2021-04-11 23:08:43 +08:00
help="Benchmark mode. One of 'inference', 'train', 'both'. Defaults to 'both'")
parser.add_argument('--detail', action='store_true', default=False,
help='Provide train fwd/bwd/opt breakdown detail if True. Defaults to False')
parser.add_argument('--no-retry', action='store_true', default=False,
help='Do not decay batch size and retry on error.')
parser.add_argument('--results-file', default='', type=str, metavar='FILENAME',
help='Output csv file for validation results (summary)')
parser.add_argument('--num-warm-iter', default=10, type=int,
metavar='N', help='Number of warmup iterations (default: 10)')
parser.add_argument('--num-bench-iter', default=40, type=int,
metavar='N', help='Number of benchmark iterations (default: 40)')
# common inference / train args
parser.add_argument('--model', '-m', metavar='NAME', default='resnet50',
help='model architecture (default: resnet50)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('--img-size', default=None, type=int,
metavar='N', help='Input image dimension, uses model default if empty')
parser.add_argument('--input-size', default=None, nargs=3, type=int,
metavar='N N N', help='Input all image dimensions (d h w, e.g. --input-size 3 224 224), uses model default if empty')
parser.add_argument('--use-train-size', action='store_true', default=False,
help='Run inference at train size, not test-input-size if it exists.')
parser.add_argument('--num-classes', type=int, default=None,
help='Number classes in dataset')
parser.add_argument('--gp', default=None, type=str, metavar='POOL',
help='Global pool type, one of (fast, avg, max, avgmax, avgmaxc). Model default if None.')
parser.add_argument('--channels-last', action='store_true', default=False,
help='Use channels_last memory layout')
parser.add_argument('--grad-checkpointing', action='store_true', default=False,
help='Enable gradient checkpointing through model blocks/stages')
parser.add_argument('--amp', action='store_true', default=False,
help='use PyTorch Native AMP for mixed precision training. Overrides --precision arg.')
parser.add_argument('--precision', default='float32', type=str,
help='Numeric precision. One of (amp, float32, float16, bfloat16, tf32)')
parser.add_argument('--fuser', default='', type=str,
help="Select jit fuser. One of ('', 'te', 'old', 'nvfuser')")
2022-06-08 09:01:52 +08:00
scripting_group = parser.add_mutually_exclusive_group()
scripting_group.add_argument('--torchscript', dest='torchscript', action='store_true',
help='convert model torchscript for inference')
scripting_group.add_argument('--aot-autograd', default=False, action='store_true',
help="Enable AOT Autograd support. (It's recommended to use this option with `--fuser nvfuser` together)")
scripting_group.add_argument('--fast-norm', default=False, action='store_true',
help='enable experimental fast-norm')
# train optimizer parameters
parser.add_argument('--opt', default='sgd', type=str, metavar='OPTIMIZER',
help='Optimizer (default: "sgd"')
parser.add_argument('--opt-eps', default=None, type=float, metavar='EPSILON',
help='Optimizer Epsilon (default: None, use opt default)')
parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA',
help='Optimizer Betas (default: None, use opt default)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='Optimizer momentum (default: 0.9)')
parser.add_argument('--weight-decay', type=float, default=0.0001,
help='weight decay (default: 0.0001)')
parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--clip-mode', type=str, default='norm',
help='Gradient clipping mode. One of ("norm", "value", "agc")')
# model regularization / loss params that impact model or loss fn
parser.add_argument('--smoothing', type=float, default=0.1,
help='Label smoothing (default: 0.1)')
parser.add_argument('--drop', type=float, default=0.0, metavar='PCT',
help='Dropout rate (default: 0.)')
parser.add_argument('--drop-path', type=float, default=None, metavar='PCT',
help='Drop path rate (default: None)')
parser.add_argument('--drop-block', type=float, default=None, metavar='PCT',
help='Drop block rate (default: None)')
def timestamp(sync=False):
return time.perf_counter()
def cuda_timestamp(sync=False, device=None):
if sync:
torch.cuda.synchronize(device=device)
return time.perf_counter()
def count_params(model: nn.Module):
return sum([m.numel() for m in model.parameters()])
def resolve_precision(precision: str):
assert precision in ('amp', 'float16', 'bfloat16', 'float32')
use_amp = False
model_dtype = torch.float32
data_dtype = torch.float32
if precision == 'amp':
use_amp = True
elif precision == 'float16':
model_dtype = torch.float16
data_dtype = torch.float16
elif precision == 'bfloat16':
model_dtype = torch.bfloat16
data_dtype = torch.bfloat16
return use_amp, model_dtype, data_dtype
def profile_deepspeed(model, input_size=(3, 224, 224), batch_size=1, detailed=False):
_, macs, _ = get_model_profile(
model=model,
input_shape=(batch_size,) + input_size, # input shape/resolution
print_profile=detailed, # prints the model graph with the measured profile attached to each module
detailed=detailed, # print the detailed profile
warm_up=10, # the number of warm-ups before measuring the time of each module
as_string=False, # print raw numbers (e.g. 1000) or as human-readable strings (e.g. 1k)
output_file=None, # path to the output file. If None, the profiler prints to stdout.
ignore_modules=None) # the list of modules to ignore in the profiling
return macs, 0 # no activation count in DS
def profile_fvcore(model, input_size=(3, 224, 224), batch_size=1, detailed=False, force_cpu=False):
if force_cpu:
model = model.to('cpu')
device, dtype = next(model.parameters()).device, next(model.parameters()).dtype
example_input = torch.ones((batch_size,) + input_size, device=device, dtype=dtype)
fca = FlopCountAnalysis(model, example_input)
aca = ActivationCountAnalysis(model, example_input)
if detailed:
fcs = flop_count_str(fca)
print(fcs)
return fca.total(), aca.total()
class BenchmarkRunner:
def __init__(
self,
model_name,
detail=False,
device='cuda',
torchscript=False,
aot_autograd=False,
precision='float32',
fuser='',
num_warm_iter=10,
num_bench_iter=50,
use_train_size=False,
**kwargs
):
self.model_name = model_name
self.detail = detail
self.device = device
self.use_amp, self.model_dtype, self.data_dtype = resolve_precision(precision)
self.channels_last = kwargs.pop('channels_last', False)
self.amp_autocast = partial(torch.cuda.amp.autocast, dtype=torch.float16) if self.use_amp else suppress
if fuser:
set_jit_fuser(fuser)
self.model = create_model(
model_name,
num_classes=kwargs.pop('num_classes', None),
in_chans=3,
global_pool=kwargs.pop('gp', 'fast'),
2021-12-15 05:51:00 +08:00
scriptable=torchscript,
drop_rate=kwargs.pop('drop', 0.),
drop_path_rate=kwargs.pop('drop_path', None),
drop_block_rate=kwargs.pop('drop_block', None),
)
self.model.to(
device=self.device,
dtype=self.model_dtype,
memory_format=torch.channels_last if self.channels_last else None)
self.num_classes = self.model.num_classes
self.param_count = count_params(self.model)
_logger.info('Model %s created, param count: %d' % (model_name, self.param_count))
data_config = resolve_data_config(kwargs, model=self.model, use_test_size=not use_train_size)
self.scripted = False
if torchscript:
self.model = torch.jit.script(self.model)
self.scripted = True
self.input_size = data_config['input_size']
self.batch_size = kwargs.pop('batch_size', 256)
if aot_autograd:
assert has_functorch, "functorch is needed for --aot-autograd"
self.model = memory_efficient_fusion(self.model)
self.example_inputs = None
self.num_warm_iter = num_warm_iter
self.num_bench_iter = num_bench_iter
self.log_freq = num_bench_iter // 5
if 'cuda' in self.device:
self.time_fn = partial(cuda_timestamp, device=self.device)
else:
self.time_fn = timestamp
def _init_input(self):
self.example_inputs = torch.randn(
(self.batch_size,) + self.input_size, device=self.device, dtype=self.data_dtype)
if self.channels_last:
self.example_inputs = self.example_inputs.contiguous(memory_format=torch.channels_last)
class InferenceBenchmarkRunner(BenchmarkRunner):
def __init__(
self,
model_name,
device='cuda',
torchscript=False,
**kwargs
):
super().__init__(model_name=model_name, device=device, torchscript=torchscript, **kwargs)
self.model.eval()
def run(self):
def _step():
t_step_start = self.time_fn()
with self.amp_autocast():
output = self.model(self.example_inputs)
t_step_end = self.time_fn(True)
return t_step_end - t_step_start
_logger.info(
f'Running inference benchmark on {self.model_name} for {self.num_bench_iter} steps w/ '
f'input size {self.input_size} and batch size {self.batch_size}.')
with torch.no_grad():
self._init_input()
for _ in range(self.num_warm_iter):
_step()
total_step = 0.
num_samples = 0
t_run_start = self.time_fn()
for i in range(self.num_bench_iter):
delta_fwd = _step()
total_step += delta_fwd
num_samples += self.batch_size
num_steps = i + 1
if num_steps % self.log_freq == 0:
_logger.info(
f"Infer [{num_steps}/{self.num_bench_iter}]."
f" {num_samples / total_step:0.2f} samples/sec."
f" {1000 * total_step / num_steps:0.3f} ms/step.")
t_run_end = self.time_fn(True)
t_run_elapsed = t_run_end - t_run_start
results = dict(
samples_per_sec=round(num_samples / t_run_elapsed, 2),
step_time=round(1000 * total_step / self.num_bench_iter, 3),
batch_size=self.batch_size,
2021-03-06 08:48:31 +08:00
img_size=self.input_size[-1],
param_count=round(self.param_count / 1e6, 2),
)
retries = 0 if self.scripted else 2 # skip profiling if model is scripted
while retries:
retries -= 1
try:
if has_deepspeed_profiling:
macs, _ = profile_deepspeed(self.model, self.input_size)
results['gmacs'] = round(macs / 1e9, 2)
elif has_fvcore_profiling:
macs, activations = profile_fvcore(self.model, self.input_size, force_cpu=not retries)
results['gmacs'] = round(macs / 1e9, 2)
results['macts'] = round(activations / 1e6, 2)
except RuntimeError as e:
pass
_logger.info(
f"Inference benchmark of {self.model_name} done. "
f"{results['samples_per_sec']:.2f} samples/sec, {results['step_time']:.2f} ms/step")
return results
class TrainBenchmarkRunner(BenchmarkRunner):
def __init__(
self,
model_name,
device='cuda',
torchscript=False,
**kwargs
):
super().__init__(model_name=model_name, device=device, torchscript=torchscript, **kwargs)
self.model.train()
2022-01-21 13:19:11 +08:00
self.loss = nn.CrossEntropyLoss().to(self.device)
self.target_shape = tuple()
self.optimizer = create_optimizer_v2(
self.model,
opt=kwargs.pop('opt', 'sgd'),
lr=kwargs.pop('lr', 1e-4))
if kwargs.pop('grad_checkpointing', False):
self.model.set_grad_checkpointing()
def _gen_target(self, batch_size):
return torch.empty(
(batch_size,) + self.target_shape, device=self.device, dtype=torch.long).random_(self.num_classes)
def run(self):
def _step(detail=False):
self.optimizer.zero_grad() # can this be ignored?
t_start = self.time_fn()
t_fwd_end = t_start
t_bwd_end = t_start
with self.amp_autocast():
output = self.model(self.example_inputs)
if isinstance(output, tuple):
output = output[0]
if detail:
t_fwd_end = self.time_fn(True)
target = self._gen_target(output.shape[0])
self.loss(output, target).backward()
if detail:
t_bwd_end = self.time_fn(True)
self.optimizer.step()
t_end = self.time_fn(True)
if detail:
delta_fwd = t_fwd_end - t_start
delta_bwd = t_bwd_end - t_fwd_end
delta_opt = t_end - t_bwd_end
return delta_fwd, delta_bwd, delta_opt
else:
delta_step = t_end - t_start
return delta_step
_logger.info(
f'Running train benchmark on {self.model_name} for {self.num_bench_iter} steps w/ '
f'input size {self.input_size} and batch size {self.batch_size}.')
self._init_input()
for _ in range(self.num_warm_iter):
_step()
t_run_start = self.time_fn()
if self.detail:
total_fwd = 0.
total_bwd = 0.
total_opt = 0.
num_samples = 0
for i in range(self.num_bench_iter):
delta_fwd, delta_bwd, delta_opt = _step(True)
num_samples += self.batch_size
total_fwd += delta_fwd
total_bwd += delta_bwd
total_opt += delta_opt
num_steps = (i + 1)
if num_steps % self.log_freq == 0:
total_step = total_fwd + total_bwd + total_opt
_logger.info(
f"Train [{num_steps}/{self.num_bench_iter}]."
f" {num_samples / total_step:0.2f} samples/sec."
f" {1000 * total_fwd / num_steps:0.3f} ms/step fwd,"
f" {1000 * total_bwd / num_steps:0.3f} ms/step bwd,"
f" {1000 * total_opt / num_steps:0.3f} ms/step opt."
)
total_step = total_fwd + total_bwd + total_opt
t_run_elapsed = self.time_fn() - t_run_start
results = dict(
samples_per_sec=round(num_samples / t_run_elapsed, 2),
step_time=round(1000 * total_step / self.num_bench_iter, 3),
fwd_time=round(1000 * total_fwd / self.num_bench_iter, 3),
bwd_time=round(1000 * total_bwd / self.num_bench_iter, 3),
opt_time=round(1000 * total_opt / self.num_bench_iter, 3),
batch_size=self.batch_size,
2021-03-06 08:48:31 +08:00
img_size=self.input_size[-1],
param_count=round(self.param_count / 1e6, 2),
)
else:
total_step = 0.
num_samples = 0
for i in range(self.num_bench_iter):
delta_step = _step(False)
num_samples += self.batch_size
total_step += delta_step
num_steps = (i + 1)
if num_steps % self.log_freq == 0:
_logger.info(
f"Train [{num_steps}/{self.num_bench_iter}]."
f" {num_samples / total_step:0.2f} samples/sec."
f" {1000 * total_step / num_steps:0.3f} ms/step.")
t_run_elapsed = self.time_fn() - t_run_start
results = dict(
samples_per_sec=round(num_samples / t_run_elapsed, 2),
step_time=round(1000 * total_step / self.num_bench_iter, 3),
batch_size=self.batch_size,
img_size=self.input_size[-1],
param_count=round(self.param_count / 1e6, 2),
)
_logger.info(
f"Train benchmark of {self.model_name} done. "
f"{results['samples_per_sec']:.2f} samples/sec, {results['step_time']:.2f} ms/sample")
return results
class ProfileRunner(BenchmarkRunner):
def __init__(self, model_name, device='cuda', profiler='', **kwargs):
super().__init__(model_name=model_name, device=device, **kwargs)
if not profiler:
if has_deepspeed_profiling:
profiler = 'deepspeed'
elif has_fvcore_profiling:
profiler = 'fvcore'
assert profiler, "One of deepspeed or fvcore needs to be installed for profiling to work."
self.profiler = profiler
self.model.eval()
def run(self):
_logger.info(
f'Running profiler on {self.model_name} w/ '
f'input size {self.input_size} and batch size {self.batch_size}.')
macs = 0
activations = 0
if self.profiler == 'deepspeed':
macs, _ = profile_deepspeed(self.model, self.input_size, batch_size=self.batch_size, detailed=True)
elif self.profiler == 'fvcore':
macs, activations = profile_fvcore(self.model, self.input_size, batch_size=self.batch_size, detailed=True)
results = dict(
gmacs=round(macs / 1e9, 2),
macts=round(activations / 1e6, 2),
batch_size=self.batch_size,
img_size=self.input_size[-1],
param_count=round(self.param_count / 1e6, 2),
)
_logger.info(
f"Profile of {self.model_name} done. "
f"{results['gmacs']:.2f} GMACs, {results['param_count']:.2f} M params.")
return results
def _try_run(
model_name,
bench_fn,
bench_kwargs,
initial_batch_size,
no_batch_size_retry=False
):
batch_size = initial_batch_size
results = dict()
error_str = 'Unknown'
while batch_size:
try:
torch.cuda.empty_cache()
bench = bench_fn(model_name=model_name, batch_size=batch_size, **bench_kwargs)
results = bench.run()
return results
except RuntimeError as e:
error_str = str(e)
_logger.error(f'"{error_str}" while running benchmark.')
if not check_batch_size_retry(error_str):
_logger.error(f'Unrecoverable error encountered while benchmarking {model_name}, skipping.')
break
if no_batch_size_retry:
break
batch_size = decay_batch_step(batch_size)
_logger.warning(f'Reducing batch size to {batch_size} for retry.')
results['error'] = error_str
return results
def benchmark(args):
if args.amp:
_logger.warning("Overriding precision to 'amp' since --amp flag set.")
args.precision = 'amp'
_logger.info(f'Benchmarking in {args.precision} precision. '
f'{"NHWC" if args.channels_last else "NCHW"} layout. '
f'torchscript {"enabled" if args.torchscript else "disabled"}')
bench_kwargs = vars(args).copy()
bench_kwargs.pop('amp')
model = bench_kwargs.pop('model')
batch_size = bench_kwargs.pop('batch_size')
bench_fns = (InferenceBenchmarkRunner,)
prefixes = ('infer',)
if args.bench == 'both':
bench_fns = (
InferenceBenchmarkRunner,
TrainBenchmarkRunner
)
prefixes = ('infer', 'train')
elif args.bench == 'train':
bench_fns = TrainBenchmarkRunner,
prefixes = 'train',
elif args.bench.startswith('profile'):
# specific profiler used if included in bench mode string, otherwise default to deepspeed, fallback to fvcore
if 'deepspeed' in args.bench:
assert has_deepspeed_profiling, "deepspeed must be installed to use deepspeed flop counter"
bench_kwargs['profiler'] = 'deepspeed'
elif 'fvcore' in args.bench:
assert has_fvcore_profiling, "fvcore must be installed to use fvcore flop counter"
bench_kwargs['profiler'] = 'fvcore'
bench_fns = ProfileRunner,
batch_size = 1
model_results = OrderedDict(model=model)
for prefix, bench_fn in zip(prefixes, bench_fns):
run_results = _try_run(
model,
bench_fn,
bench_kwargs=bench_kwargs,
initial_batch_size=batch_size,
no_batch_size_retry=args.no_retry,
)
if prefix and 'error' not in run_results:
run_results = {'_'.join([prefix, k]): v for k, v in run_results.items()}
model_results.update(run_results)
if 'error' in run_results:
break
if 'error' not in model_results:
param_count = model_results.pop('infer_param_count', model_results.pop('train_param_count', 0))
model_results.setdefault('param_count', param_count)
model_results.pop('train_param_count', 0)
return model_results
def main():
setup_default_logging()
args = parser.parse_args()
model_cfgs = []
model_names = []
if args.fast_norm:
set_fast_norm()
if args.model_list:
args.model = ''
with open(args.model_list) as f:
model_names = [line.rstrip() for line in f]
model_cfgs = [(n, None) for n in model_names]
elif args.model == 'all':
# validate all models in a list of names with pretrained checkpoints
args.pretrained = True
model_names = list_models(pretrained=True, exclude_filters=['*in21k'])
model_cfgs = [(n, None) for n in model_names]
elif not is_model(args.model):
# model name doesn't exist, try as wildcard filter
model_names = list_models(args.model)
model_cfgs = [(n, None) for n in model_names]
if len(model_cfgs):
results_file = args.results_file or './benchmark.csv'
_logger.info('Running bulk validation on these pretrained models: {}'.format(', '.join(model_names)))
results = []
try:
for m, _ in model_cfgs:
if not m:
continue
args.model = m
r = benchmark(args)
if r:
results.append(r)
time.sleep(10)
except KeyboardInterrupt as e:
pass
sort_key = 'infer_samples_per_sec'
if 'train' in args.bench:
sort_key = 'train_samples_per_sec'
elif 'profile' in args.bench:
sort_key = 'infer_gmacs'
results = filter(lambda x: sort_key in x, results)
results = sorted(results, key=lambda x: x[sort_key], reverse=True)
if len(results):
write_results(results_file, results)
else:
results = benchmark(args)
# output results in JSON to stdout w/ delimiter for runner script
print(f'--result\n{json.dumps(results, indent=4)}')
def write_results(results_file, results):
with open(results_file, mode='w') as cf:
dw = csv.DictWriter(cf, fieldnames=results[0].keys())
dw.writeheader()
for r in results:
dw.writerow(r)
cf.flush()
if __name__ == '__main__':
main()