2021-03-14 12:08:56 -07:00
# EfficientNet
2021-03-11 16:52:13 +00:00
**EfficientNet** is a convolutional neural network architecture and scaling method that uniformly scales all dimensions of depth/width/resolution using a *compound coefficient* . Unlike conventional practice that arbitrary scales these factors, the EfficientNet scaling method uniformly scales network width, depth, and resolution with a set of fixed scaling coefficients. For example, if we want to use $2^N$ times more computational resources, then we can simply increase the network depth by $\alpha ^ N$, width by $\beta ^ N$, and image size by $\gamma ^ N$, where $\alpha, \beta, \gamma$ are constant coefficients determined by a small grid search on the original small model. EfficientNet uses a compound coefficient $\phi$ to uniformly scales network width, depth, and resolution in a principled way.
The compound scaling method is justified by the intuition that if the input image is bigger, then the network needs more layers to increase the receptive field and m ore channels to capture more fine-grained patterns on the bigger image.
The base EfficientNet-B0 network is based on the inverted bottleneck residual blocks of [MobileNetV2 ](https://paperswithcode.com/method/mobilenetv2 ), in addition to [squeeze-and-excitation blocks ](https://paperswithcode.com/method/squeeze-and-excitation-block ).
## How do I use this model on an image?
To load a pretrained model:
```python
import timm
2021-03-12 18:38:10 +00:00
model = timm.create_model('efficientnet_b0', pretrained=True)
2021-03-11 16:52:13 +00:00
model.eval()
```
To load and preprocess the image:
```python
import urllib
from PIL import Image
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
config = resolve_data_config({}, model=model)
transform = create_transform(**config)
url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
urllib.request.urlretrieve(url, filename)
img = Image.open(filename).convert('RGB')
tensor = transform(img).unsqueeze(0) # transform and add batch dimension
```
To get the model predictions:
```python
import torch
with torch.no_grad():
out = model(tensor)
probabilities = torch.nn.functional.softmax(out[0], dim=0)
print(probabilities.shape)
# prints: torch.Size([1000])
```
To get the top-5 predictions class names:
```python
# Get imagenet class mappings
url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
urllib.request.urlretrieve(url, filename)
with open("imagenet_classes.txt", "r") as f:
categories = [s.strip() for s in f.readlines()]
# Print top categories per image
top5_prob, top5_catid = torch.topk(probabilities, 5)
for i in range(top5_prob.size(0)):
print(categories[top5_catid[i]], top5_prob[i].item())
# prints class names and probabilities like:
# [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
```
2021-03-12 18:38:10 +00:00
Replace the model name with the variant you want to use, e.g. `efficientnet_b0` . You can find the IDs in the model summaries at the top of this page.
2021-03-11 16:52:13 +00:00
To extract image features with this model, follow the [timm feature extraction examples ](https://rwightman.github.io/pytorch-image-models/feature_extraction/ ), just change the name of the model you want to use.
## How do I finetune this model?
You can finetune any of the pre-trained models just by changing the classifier (the last layer).
```python
2021-03-14 12:22:59 -07:00
model = timm.create_model('efficientnet_b0', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)
2021-03-11 16:52:13 +00:00
```
To finetune on your own dataset, you have to write a training loop or adapt [timm's training
script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset.
## How do I train this model?
You can follow the [timm recipe scripts ](https://rwightman.github.io/pytorch-image-models/scripts/ ) for training a new model afresh.
## Citation
```BibTeX
@misc {tan2020efficientnet,
title={EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks},
author={Mingxing Tan and Quoc V. Le},
year={2020},
eprint={1905.11946},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
<!--
2021-03-12 18:38:10 +00:00
Type: model-index
Collections:
- Name: EfficientNet
Paper:
Title: 'EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks'
URL: https://paperswithcode.com/paper/efficientnet-rethinking-model-scaling-for
2021-03-11 16:52:13 +00:00
Models:
2021-03-12 18:38:10 +00:00
- Name: efficientnet_b0
In Collection: EfficientNet
2021-03-11 16:52:13 +00:00
Metadata:
2021-03-12 18:38:10 +00:00
FLOPs: 511241564
Parameters: 5290000
File Size: 21376743
2021-03-11 16:52:13 +00:00
Architecture:
- 1x1 Convolution
- Average Pooling
- Batch Normalization
- Convolution
- Dense Connections
- Dropout
- Inverted Residual Block
- Squeeze-and-Excitation Block
- Swish
Tasks:
- Image Classification
2021-03-12 18:38:10 +00:00
Training Data:
- ImageNet
ID: efficientnet_b0
Layers: 18
Crop Pct: '0.875'
Image Size: '224'
2021-03-11 16:52:13 +00:00
Interpolation: bicubic
2021-03-12 18:38:10 +00:00
Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1002
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b0_ra-3dd342df.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 77.71%
Top 5 Accuracy: 93.52%
- Name: efficientnet_b1
2021-03-11 16:52:13 +00:00
In Collection: EfficientNet
Metadata:
2021-03-12 18:38:10 +00:00
FLOPs: 909691920
Parameters: 7790000
File Size: 31502706
2021-03-11 16:52:13 +00:00
Architecture:
- 1x1 Convolution
- Average Pooling
- Batch Normalization
- Convolution
- Dense Connections
- Dropout
- Inverted Residual Block
- Squeeze-and-Excitation Block
- Swish
Tasks:
- Image Classification
2021-03-12 18:38:10 +00:00
Training Data:
- ImageNet
ID: efficientnet_b1
Crop Pct: '0.875'
Image Size: '240'
2021-03-11 16:52:13 +00:00
Interpolation: bicubic
2021-03-12 18:38:10 +00:00
Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1011
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b1-533bc792.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 78.71%
Top 5 Accuracy: 94.15%
- Name: efficientnet_b2
2021-03-11 16:52:13 +00:00
In Collection: EfficientNet
Metadata:
2021-03-12 18:38:10 +00:00
FLOPs: 1265324514
Parameters: 9110000
File Size: 36788104
2021-03-11 16:52:13 +00:00
Architecture:
- 1x1 Convolution
- Average Pooling
- Batch Normalization
- Convolution
- Dense Connections
- Dropout
- Inverted Residual Block
- Squeeze-and-Excitation Block
- Swish
Tasks:
- Image Classification
2021-03-12 18:38:10 +00:00
Training Data:
- ImageNet
ID: efficientnet_b2
Crop Pct: '0.875'
Image Size: '260'
2021-03-11 16:52:13 +00:00
Interpolation: bicubic
2021-03-12 18:38:10 +00:00
Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1020
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b2_ra-bcdf34b7.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 80.38%
Top 5 Accuracy: 95.08%
- Name: efficientnet_b2a
2021-03-11 16:52:13 +00:00
In Collection: EfficientNet
Metadata:
2021-03-12 18:38:10 +00:00
FLOPs: 1452041554
Parameters: 9110000
File Size: 49369973
2021-03-11 16:52:13 +00:00
Architecture:
- 1x1 Convolution
- Average Pooling
- Batch Normalization
- Convolution
- Dense Connections
- Dropout
- Inverted Residual Block
- Squeeze-and-Excitation Block
- Swish
Tasks:
- Image Classification
2021-03-12 18:38:10 +00:00
Training Data:
- ImageNet
ID: efficientnet_b2a
Crop Pct: '1.0'
Image Size: '288'
2021-03-11 16:52:13 +00:00
Interpolation: bicubic
2021-03-12 18:38:10 +00:00
Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1029
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b3_ra2-cf984f9c.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 80.61%
Top 5 Accuracy: 95.32%
- Name: efficientnet_b3
2021-03-11 16:52:13 +00:00
In Collection: EfficientNet
Metadata:
2021-03-12 18:38:10 +00:00
FLOPs: 2327905920
Parameters: 12230000
File Size: 49369973
2021-03-11 16:52:13 +00:00
Architecture:
- 1x1 Convolution
- Average Pooling
- Batch Normalization
- Convolution
- Dense Connections
- Dropout
- Inverted Residual Block
- Squeeze-and-Excitation Block
- Swish
Tasks:
- Image Classification
2021-03-12 18:38:10 +00:00
Training Data:
- ImageNet
ID: efficientnet_b3
Crop Pct: '0.904'
Image Size: '300'
2021-03-11 16:52:13 +00:00
Interpolation: bicubic
2021-03-12 18:38:10 +00:00
Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1038
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b3_ra2-cf984f9c.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 82.08%
Top 5 Accuracy: 96.03%
- Name: efficientnet_b3a
2021-03-11 16:52:13 +00:00
In Collection: EfficientNet
Metadata:
2021-03-12 18:38:10 +00:00
FLOPs: 2600628304
Parameters: 12230000
File Size: 49369973
2021-03-11 16:52:13 +00:00
Architecture:
- 1x1 Convolution
- Average Pooling
- Batch Normalization
- Convolution
- Dense Connections
- Dropout
- Inverted Residual Block
- Squeeze-and-Excitation Block
- Swish
Tasks:
- Image Classification
2021-03-12 18:38:10 +00:00
Training Data:
- ImageNet
ID: efficientnet_b3a
Crop Pct: '1.0'
Image Size: '320'
2021-03-11 16:52:13 +00:00
Interpolation: bicubic
2021-03-12 18:38:10 +00:00
Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1047
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b3_ra2-cf984f9c.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 82.25%
Top 5 Accuracy: 96.11%
- Name: efficientnet_em
2021-03-11 16:52:13 +00:00
In Collection: EfficientNet
Metadata:
2021-03-12 18:38:10 +00:00
FLOPs: 3935516480
Parameters: 6900000
File Size: 27927309
2021-03-11 16:52:13 +00:00
Architecture:
- 1x1 Convolution
- Average Pooling
- Batch Normalization
- Convolution
- Dense Connections
- Dropout
- Inverted Residual Block
- Squeeze-and-Excitation Block
- Swish
Tasks:
- Image Classification
2021-03-12 18:38:10 +00:00
Training Data:
- ImageNet
ID: efficientnet_em
Crop Pct: '0.882'
Image Size: '240'
2021-03-11 16:52:13 +00:00
Interpolation: bicubic
2021-03-12 18:38:10 +00:00
Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1118
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_em_ra2-66250f76.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 79.26%
Top 5 Accuracy: 94.79%
- Name: efficientnet_es
2021-03-11 16:52:13 +00:00
In Collection: EfficientNet
Metadata:
2021-03-12 18:38:10 +00:00
FLOPs: 2317181824
Parameters: 5440000
File Size: 22003339
2021-03-11 16:52:13 +00:00
Architecture:
- 1x1 Convolution
- Average Pooling
- Batch Normalization
- Convolution
- Dense Connections
- Dropout
- Inverted Residual Block
- Squeeze-and-Excitation Block
- Swish
Tasks:
- Image Classification
2021-03-12 18:38:10 +00:00
Training Data:
- ImageNet
ID: efficientnet_es
2021-03-11 16:52:13 +00:00
Crop Pct: '0.875'
2021-03-12 18:38:10 +00:00
Image Size: '224'
2021-03-11 16:52:13 +00:00
Interpolation: bicubic
2021-03-12 18:38:10 +00:00
Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1110
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_es_ra-f111e99c.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 78.09%
Top 5 Accuracy: 93.93%
- Name: efficientnet_lite0
2021-03-11 16:52:13 +00:00
In Collection: EfficientNet
Metadata:
2021-03-12 18:38:10 +00:00
FLOPs: 510605024
Parameters: 4650000
File Size: 18820005
2021-03-11 16:52:13 +00:00
Architecture:
- 1x1 Convolution
- Average Pooling
- Batch Normalization
- Convolution
- Dense Connections
- Dropout
- Inverted Residual Block
- Squeeze-and-Excitation Block
- Swish
Tasks:
- Image Classification
2021-03-12 18:38:10 +00:00
Training Data:
- ImageNet
ID: efficientnet_lite0
2021-03-11 16:52:13 +00:00
Crop Pct: '0.875'
2021-03-12 18:38:10 +00:00
Image Size: '224'
2021-03-11 16:52:13 +00:00
Interpolation: bicubic
2021-03-12 18:38:10 +00:00
Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1163
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_lite0_ra-37913777.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 75.5%
Top 5 Accuracy: 92.51%
2021-03-11 16:52:13 +00:00
-->