2021-03-15 03:08:56 +08:00
# Dual Path Network (DPN)
2021-03-12 00:52:13 +08:00
A **Dual Path Network (DPN)** is a convolutional neural network which presents a new topology of connection paths internally. The intuition is that [ResNets ](https://paperswithcode.com/method/resnet ) enables feature re-usage while DenseNet enables new feature exploration, and both are important for learning good representations. To enjoy the benefits from both path topologies, Dual Path Networks share common features while maintaining the flexibility to explore new features through dual path architectures.
The principal building block is an [DPN Block ](https://paperswithcode.com/method/dpn-block ).
## How do I use this model on an image?
To load a pretrained model:
```python
import timm
2021-03-13 02:38:10 +08:00
model = timm.create_model('dpn107', pretrained=True)
2021-03-12 00:52:13 +08:00
model.eval()
```
To load and preprocess the image:
```python
import urllib
from PIL import Image
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
config = resolve_data_config({}, model=model)
transform = create_transform(**config)
url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
urllib.request.urlretrieve(url, filename)
img = Image.open(filename).convert('RGB')
tensor = transform(img).unsqueeze(0) # transform and add batch dimension
```
To get the model predictions:
```python
import torch
with torch.no_grad():
out = model(tensor)
probabilities = torch.nn.functional.softmax(out[0], dim=0)
print(probabilities.shape)
# prints: torch.Size([1000])
```
To get the top-5 predictions class names:
```python
# Get imagenet class mappings
url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
urllib.request.urlretrieve(url, filename)
with open("imagenet_classes.txt", "r") as f:
categories = [s.strip() for s in f.readlines()]
# Print top categories per image
top5_prob, top5_catid = torch.topk(probabilities, 5)
for i in range(top5_prob.size(0)):
print(categories[top5_catid[i]], top5_prob[i].item())
# prints class names and probabilities like:
# [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
```
2021-03-13 02:38:10 +08:00
Replace the model name with the variant you want to use, e.g. `dpn107` . You can find the IDs in the model summaries at the top of this page.
2021-03-12 00:52:13 +08:00
To extract image features with this model, follow the [timm feature extraction examples ](https://rwightman.github.io/pytorch-image-models/feature_extraction/ ), just change the name of the model you want to use.
## How do I finetune this model?
You can finetune any of the pre-trained models just by changing the classifier (the last layer).
```python
2021-03-15 03:22:59 +08:00
model = timm.create_model('dpn107', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)
2021-03-12 00:52:13 +08:00
```
To finetune on your own dataset, you have to write a training loop or adapt [timm's training
script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset.
## How do I train this model?
You can follow the [timm recipe scripts ](https://rwightman.github.io/pytorch-image-models/scripts/ ) for training a new model afresh.
## Citation
```BibTeX
@misc {chen2017dual,
title={Dual Path Networks},
author={Yunpeng Chen and Jianan Li and Huaxin Xiao and Xiaojie Jin and Shuicheng Yan and Jiashi Feng},
year={2017},
eprint={1707.01629},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
<!--
2021-03-13 02:38:10 +08:00
Type: model-index
Collections:
- Name: DPN
Paper:
Title: Dual Path Networks
URL: https://paperswithcode.com/paper/dual-path-networks
2021-03-12 00:52:13 +08:00
Models:
2021-03-13 02:38:10 +08:00
- Name: dpn107
In Collection: DPN
2021-03-12 00:52:13 +08:00
Metadata:
2021-03-13 02:38:10 +08:00
FLOPs: 23524280296
Parameters: 86920000
File Size: 348612331
2021-03-12 00:52:13 +08:00
Architecture:
- Batch Normalization
- Convolution
- DPN Block
- Dense Connections
- Global Average Pooling
- Max Pooling
- Softmax
Tasks:
- Image Classification
2021-03-13 02:38:10 +08:00
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Data:
- ImageNet
Training Resources: 40x K80 GPUs
ID: dpn107
2021-03-12 00:52:13 +08:00
LR: 0.316
2021-03-13 02:38:10 +08:00
Layers: 107
2021-03-12 00:52:13 +08:00
Crop Pct: '0.875'
2021-03-13 02:38:10 +08:00
Batch Size: 1280
2021-03-12 00:52:13 +08:00
Image Size: '224'
Interpolation: bicubic
2021-03-13 02:38:10 +08:00
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dpn.py#L310
Weights: https://github.com/rwightman/pytorch-dpn-pretrained/releases/download/v0.1/dpn107_extra-1ac7121e2.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 80.16%
Top 5 Accuracy: 94.91%
- Name: dpn131
2021-03-12 00:52:13 +08:00
In Collection: DPN
Metadata:
2021-03-13 02:38:10 +08:00
FLOPs: 20586274792
Parameters: 79250000
File Size: 318016207
2021-03-12 00:52:13 +08:00
Architecture:
- Batch Normalization
- Convolution
- DPN Block
- Dense Connections
- Global Average Pooling
- Max Pooling
- Softmax
Tasks:
- Image Classification
2021-03-13 02:38:10 +08:00
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Data:
- ImageNet
Training Resources: 40x K80 GPUs
ID: dpn131
2021-03-12 00:52:13 +08:00
LR: 0.316
2021-03-13 02:38:10 +08:00
Layers: 131
2021-03-12 00:52:13 +08:00
Crop Pct: '0.875'
2021-03-13 02:38:10 +08:00
Batch Size: 960
2021-03-12 00:52:13 +08:00
Image Size: '224'
Interpolation: bicubic
2021-03-13 02:38:10 +08:00
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dpn.py#L302
Weights: https://github.com/rwightman/pytorch-dpn-pretrained/releases/download/v0.1/dpn131-71dfe43e0.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 79.83%
Top 5 Accuracy: 94.71%
- Name: dpn68
2021-03-12 00:52:13 +08:00
In Collection: DPN
Metadata:
2021-03-13 02:38:10 +08:00
FLOPs: 2990567880
Parameters: 12610000
File Size: 50761994
2021-03-12 00:52:13 +08:00
Architecture:
- Batch Normalization
- Convolution
- DPN Block
- Dense Connections
- Global Average Pooling
- Max Pooling
- Softmax
Tasks:
- Image Classification
2021-03-13 02:38:10 +08:00
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Data:
- ImageNet
Training Resources: 40x K80 GPUs
ID: dpn68
2021-03-12 00:52:13 +08:00
LR: 0.316
2021-03-13 02:38:10 +08:00
Layers: 68
2021-03-12 00:52:13 +08:00
Crop Pct: '0.875'
2021-03-13 02:38:10 +08:00
Batch Size: 1280
2021-03-12 00:52:13 +08:00
Image Size: '224'
Interpolation: bicubic
2021-03-13 02:38:10 +08:00
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dpn.py#L270
Weights: https://github.com/rwightman/pytorch-dpn-pretrained/releases/download/v0.1/dpn68-66bebafa7.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 76.31%
Top 5 Accuracy: 92.97%
- Name: dpn68b
2021-03-12 00:52:13 +08:00
In Collection: DPN
Metadata:
2021-03-13 02:38:10 +08:00
FLOPs: 2990567880
Parameters: 12610000
File Size: 50781025
2021-03-12 00:52:13 +08:00
Architecture:
- Batch Normalization
- Convolution
- DPN Block
- Dense Connections
- Global Average Pooling
- Max Pooling
- Softmax
Tasks:
- Image Classification
2021-03-13 02:38:10 +08:00
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Data:
- ImageNet
Training Resources: 40x K80 GPUs
ID: dpn68b
2021-03-12 00:52:13 +08:00
LR: 0.316
2021-03-13 02:38:10 +08:00
Layers: 68
2021-03-12 00:52:13 +08:00
Crop Pct: '0.875'
2021-03-13 02:38:10 +08:00
Batch Size: 1280
2021-03-12 00:52:13 +08:00
Image Size: '224'
Interpolation: bicubic
2021-03-13 02:38:10 +08:00
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dpn.py#L278
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/dpn68b_ra-a31ca160.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 79.21%
Top 5 Accuracy: 94.42%
- Name: dpn92
2021-03-12 00:52:13 +08:00
In Collection: DPN
Metadata:
2021-03-13 02:38:10 +08:00
FLOPs: 8357659624
Parameters: 37670000
File Size: 151248422
2021-03-12 00:52:13 +08:00
Architecture:
- Batch Normalization
- Convolution
- DPN Block
- Dense Connections
- Global Average Pooling
- Max Pooling
- Softmax
Tasks:
- Image Classification
2021-03-13 02:38:10 +08:00
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Data:
- ImageNet
Training Resources: 40x K80 GPUs
ID: dpn92
2021-03-12 00:52:13 +08:00
LR: 0.316
2021-03-13 02:38:10 +08:00
Layers: 92
2021-03-12 00:52:13 +08:00
Crop Pct: '0.875'
2021-03-13 02:38:10 +08:00
Batch Size: 1280
2021-03-12 00:52:13 +08:00
Image Size: '224'
Interpolation: bicubic
2021-03-13 02:38:10 +08:00
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dpn.py#L286
Weights: https://github.com/rwightman/pytorch-dpn-pretrained/releases/download/v0.1/dpn92_extra-b040e4a9b.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 79.99%
Top 5 Accuracy: 94.84%
2021-03-12 00:52:13 +08:00
- Name: dpn98
2021-03-13 02:38:10 +08:00
In Collection: DPN
2021-03-12 00:52:13 +08:00
Metadata:
FLOPs: 15003675112
2021-03-13 02:38:10 +08:00
Parameters: 61570000
File Size: 247021307
2021-03-12 00:52:13 +08:00
Architecture:
- Batch Normalization
- Convolution
- DPN Block
- Dense Connections
- Global Average Pooling
- Max Pooling
- Softmax
Tasks:
- Image Classification
2021-03-13 02:38:10 +08:00
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Data:
- ImageNet
Training Resources: 40x K80 GPUs
2021-03-12 00:52:13 +08:00
ID: dpn98
LR: 0.4
Layers: 98
Crop Pct: '0.875'
2021-03-13 02:38:10 +08:00
Batch Size: 1280
2021-03-12 00:52:13 +08:00
Image Size: '224'
Interpolation: bicubic
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dpn.py#L294
2021-03-13 02:38:10 +08:00
Weights: https://github.com/rwightman/pytorch-dpn-pretrained/releases/download/v0.1/dpn98-5b90dec4d.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 79.65%
Top 5 Accuracy: 94.61%
2021-03-12 00:52:13 +08:00
-->