108 lines
3.9 KiB
Python
108 lines
3.9 KiB
Python
|
""" PyTorch impl of LaProp optimizer
|
||
|
|
||
|
Code simplified from https://github.com/Z-T-WANG/LaProp-Optimizer, MIT License
|
||
|
|
||
|
Paper: LaProp: Separating Momentum and Adaptivity in Adam, https://arxiv.org/abs/2002.04839
|
||
|
|
||
|
@article{ziyin2020laprop,
|
||
|
title={LaProp: a Better Way to Combine Momentum with Adaptive Gradient},
|
||
|
author={Ziyin, Liu and Wang, Zhikang T and Ueda, Masahito},
|
||
|
journal={arXiv preprint arXiv:2002.04839},
|
||
|
year={2020}
|
||
|
}
|
||
|
|
||
|
"""
|
||
|
from torch.optim import Optimizer
|
||
|
import torch
|
||
|
|
||
|
|
||
|
class LaProp(Optimizer):
|
||
|
""" LaProp Optimizer
|
||
|
|
||
|
Paper: LaProp: Separating Momentum and Adaptivity in Adam, https://arxiv.org/abs/2002.04839
|
||
|
"""
|
||
|
def __init__(
|
||
|
self,
|
||
|
params,
|
||
|
lr=4e-4,
|
||
|
betas=(0.9, 0.999),
|
||
|
eps=1e-15,
|
||
|
weight_decay=0,
|
||
|
):
|
||
|
if not 0.0 <= lr:
|
||
|
raise ValueError("Invalid learning rate: {}".format(lr))
|
||
|
if not 0.0 <= eps:
|
||
|
raise ValueError("Invalid epsilon value: {}".format(eps))
|
||
|
if not 0.0 <= betas[0] < 1.0:
|
||
|
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
|
||
|
if not 0.0 <= betas[1] < 1.0:
|
||
|
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
|
||
|
defaults = dict(
|
||
|
lr=lr,
|
||
|
betas=betas,
|
||
|
eps=eps,
|
||
|
weight_decay=weight_decay,
|
||
|
)
|
||
|
super(LaProp, self).__init__(params, defaults)
|
||
|
|
||
|
@torch.no_grad()
|
||
|
def step(self, closure=None):
|
||
|
"""Performs a single optimization step.
|
||
|
|
||
|
Arguments:
|
||
|
closure (callable, optional): A closure that reevaluates the model
|
||
|
and returns the loss.
|
||
|
"""
|
||
|
loss = None
|
||
|
if closure is not None:
|
||
|
with torch.enable_grad():
|
||
|
loss = closure()
|
||
|
|
||
|
for group in self.param_groups:
|
||
|
for p in group['params']:
|
||
|
if p.grad is None:
|
||
|
continue
|
||
|
grad = p.grad
|
||
|
if grad.is_sparse:
|
||
|
raise RuntimeError('LaProp does not support sparse gradients')
|
||
|
|
||
|
state = self.state[p]
|
||
|
|
||
|
# State initialization
|
||
|
if len(state) == 0:
|
||
|
state['step'] = 0
|
||
|
# Exponential moving average of gradient values
|
||
|
state['exp_avg'] = torch.zeros_like(p)
|
||
|
# Exponential moving average of learning rates
|
||
|
state['exp_avg_lr_1'] = 0.
|
||
|
state['exp_avg_lr_2'] = 0.
|
||
|
# Exponential moving average of squared gradient values
|
||
|
state['exp_avg_sq'] = torch.zeros_like(p)
|
||
|
|
||
|
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
|
||
|
beta1, beta2 = group['betas']
|
||
|
|
||
|
state['step'] += 1
|
||
|
one_minus_beta2 = 1 - beta2
|
||
|
one_minus_beta1 = 1 - beta1
|
||
|
|
||
|
# Decay the first and second moment running average coefficient
|
||
|
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=one_minus_beta2)
|
||
|
|
||
|
state['exp_avg_lr_1'] = state['exp_avg_lr_1'] * beta1 + one_minus_beta1 * group['lr']
|
||
|
state['exp_avg_lr_2'] = state['exp_avg_lr_2'] * beta2 + one_minus_beta2
|
||
|
|
||
|
# 1 - beta1 ** state['step']
|
||
|
bias_correction1 = state['exp_avg_lr_1'] / group['lr'] if group['lr'] != 0. else 1.
|
||
|
bias_correction2 = state['exp_avg_lr_2']
|
||
|
step_size = 1 / bias_correction1
|
||
|
|
||
|
denom = exp_avg_sq.div(bias_correction2).sqrt_().add_(group['eps'])
|
||
|
step_of_this_grad = grad / denom
|
||
|
exp_avg.mul_(beta1).add_(step_of_this_grad, alpha=group['lr'] * one_minus_beta1)
|
||
|
|
||
|
p.add_(exp_avg, alpha=-step_size)
|
||
|
if group['weight_decay'] != 0:
|
||
|
p.add_(p, alpha=-group['weight_decay'])
|
||
|
|
||
|
return loss
|