pytorch-image-models/timm/models/vitamin.py

532 lines
18 KiB
Python
Raw Normal View History

2024-05-05 14:50:14 +08:00
""" ViTamin
Paper: Designing Scalable Vison Models in the Vision-Language Era
A family of model weights on Huggingface: https://huggingface.co/collections/jienengchen/vitamin-family-661048126b72debdaca060bf
2024-05-05 14:50:14 +08:00
@inproceedings{chen2024vitamin,
title={ViTamin: Designing Scalable Vision Models in the Vision-language Era},
author={Chen, Jieneng and Yu, Qihang and Shen, Xiaohui and Yuille, Alan and Chen, Liang-Chieh},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
year={2024}
2024-05-05 14:50:14 +08:00
}
Based on Apache 2.0 licensed code at https://github.com/ViTamin/ViTamin
Modifications and timm support by Jieneng Chen 2024
2024-05-05 14:50:14 +08:00
Reference:
https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py
https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer_hybrid.py
"""
from functools import partial
from typing import List, Tuple
from dataclasses import dataclass, replace, field
2024-05-05 14:50:14 +08:00
from typing import Callable, Optional, Union, Tuple, List, Sequence
import math, time
from torch.jit import Final
import torch
import torch.nn as nn
import torch.nn.functional as F
import timm
2024-05-05 14:50:14 +08:00
from torch.utils.checkpoint import checkpoint
from timm.models.layers import create_attn, get_norm_layer, get_norm_act_layer, create_conv2d, make_divisible, trunc_normal_tf_
from timm.layers import to_2tuple
2024-05-05 14:50:14 +08:00
from timm.layers import DropPath
from timm.layers.norm_act import _create_act
from timm.models._manipulate import named_apply, checkpoint_seq
from timm.models._builder import build_model_with_cfg
from timm.models._registry import register_model
2024-05-05 14:50:14 +08:00
from timm.models.vision_transformer import VisionTransformer, checkpoint_filter_fn
from timm.models.vision_transformer_hybrid import HybridEmbed
@dataclass
class VitConvCfg:
expand_ratio: float = 4.0
expand_output: bool = True # calculate expansion channels from output (vs input chs)
kernel_size: int = 3
group_size: int = 1 # 1 == depthwise
pre_norm_act: bool = False # activation after pre-norm
stride_mode: str = 'dw' # stride done via one of 'pool', '1x1', 'dw'
pool_type: str = 'avg2'
downsample_pool_type: str = 'avg2'
act_layer: str = 'gelu' # stem & stage 1234
norm_layer: str = ''
norm_eps: float = 1e-5
2024-05-05 14:50:14 +08:00
down_shortcut: Optional[bool] = True
mlp: str = 'mlp'
@dataclass
class VitCfg:
embed_dim: Tuple[Union[int, Tuple[int, ...]], ...] = (96, 192, 384, 768)
depths: Tuple[Union[int, Tuple[int, ...]], ...] = (2, 3, 5, 2)
stem_width: int = 64
conv_cfg: VitConvCfg = field(default_factory=VitConvCfg)
2024-05-05 14:50:14 +08:00
head_type: str = ""
def _init_conv(module, name, scheme=''):
if isinstance(module, nn.Conv2d):
fan_out = module.kernel_size[0] * module.kernel_size[1] * module.out_channels
fan_out //= module.groups
nn.init.normal_(module.weight, 0, math.sqrt(2.0 / fan_out))
if module.bias is not None:
nn.init.zeros_(module.bias)
2024-05-05 14:50:14 +08:00
class Stem(nn.Module):
def __init__(
self,
in_chs: int,
out_chs: int,
act_layer: str = 'gelu',
norm_layer: str = 'layernorm2d',
norm_eps: float = 1e-6,
bias: bool = True,
):
super().__init__()
self.grad_checkpointing=False
norm_act_layer = partial(get_norm_act_layer(norm_layer, act_layer), eps=norm_eps)
self.out_chs = out_chs
self.conv1 = create_conv2d(in_chs, out_chs, 3, stride=2, bias=bias)
self.norm1 = norm_act_layer(out_chs)
self.conv2 = create_conv2d(out_chs, out_chs, 3, stride=1, bias=bias)
named_apply(_init_conv, self)
def forward(self, x):
if self.grad_checkpointing:
x = checkpoint(self.conv1, x)
x = self.norm1(x)
x = checkpoint(self.conv2, x)
else:
x = self.conv1(x)
x = self.norm1(x)
x = self.conv2(x)
return x
2024-05-05 14:50:14 +08:00
class Downsample2d(nn.Module):
def __init__(
self,
dim: int,
dim_out: int,
pool_type: str = 'avg2',
bias: bool = True,
):
super().__init__()
self.pool = nn.AvgPool2d(kernel_size=3, stride=2, padding=1, count_include_pad=False)
if dim != dim_out:
self.expand = nn.Conv2d(dim, dim_out, 1, bias=bias) # 1x1 conv
else:
self.expand = nn.Identity()
def forward(self, x):
x = self.pool(x) # spatial downsample
x = self.expand(x) # expand chs
return x
class StridedConv(nn.Module):
""" downsample 2d as well
"""
def __init__(
self,
kernel_size=3,
stride=2,
padding=1,
in_chans=3,
embed_dim=768
2024-05-05 14:50:14 +08:00
):
super().__init__()
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding)
norm_layer = partial(get_norm_layer('layernorm2d'), eps=1e-6)
self.norm = norm_layer(in_chans) # affine over C
def forward(self, x):
x = self.norm(x)
x = self.proj(x)
return x
class MbConvLNBlock(nn.Module):
""" Pre-Norm Conv Block - 1x1 - kxk - 1x1, w/ inverted bottleneck (expand)
"""
def __init__(
self,
in_chs: int,
out_chs: int,
stride: int = 1,
drop_path: float = 0.,
kernel_size: int = 3,
norm_layer: str = 'layernorm2d',
norm_eps: float = 1e-6,
act_layer: str = 'gelu',
expand_ratio: float = 4.0,
):
super(MbConvLNBlock, self).__init__()
self.stride, self.in_chs, self.out_chs = stride, in_chs, out_chs
mid_chs = make_divisible(out_chs * expand_ratio)
prenorm_act_layer = partial(get_norm_act_layer(norm_layer, act_layer), eps=norm_eps)
if stride == 2:
self.shortcut = Downsample2d(in_chs, out_chs, pool_type='avg', bias=True)
elif in_chs != out_chs:
self.shortcut = nn.Conv2d(in_chs, out_chs, 1, bias=True)
else:
self.shortcut = nn.Identity()
self.pre_norm = prenorm_act_layer(in_chs, apply_act=False)
self.down = nn.Identity()
self.conv1_1x1 = create_conv2d(in_chs, mid_chs, 1, stride=1, bias=True)
self.act1 = _create_act(act_layer, inplace=True)
self.act2 = _create_act(act_layer, inplace=True)
self.conv2_kxk = create_conv2d(mid_chs, mid_chs, kernel_size, stride=stride, dilation=1, groups=mid_chs, bias=True)
self.conv3_1x1 = create_conv2d(mid_chs, out_chs, 1, bias=True)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def init_weights(self, scheme=''):
named_apply(partial(_init_conv, scheme=scheme), self)
def forward(self, x):
shortcut = self.shortcut(x)
x = self.pre_norm(x)
x = self.down(x) # nn.Identity()
# 1x1 expansion conv & act
x = self.conv1_1x1(x)
x = self.act1(x)
# (strided) depthwise 3x3 conv & act
x = self.conv2_kxk(x)
x = self.act2(x)
# 1x1 linear projection to output width
x = self.conv3_1x1(x)
x = self.drop_path(x) + shortcut
return x
class MbConvStages(nn.Module):
""" MobileConv for stage 1 and stage 2 of ViTamin
"""
def __init__(
self,
cfg: VitCfg,
img_size: Union[int, Tuple[int, int]] = 224, # place holder
in_chans: int = 3,
):
super().__init__()
self.grad_checkpointing = False
self.stem = Stem(
in_chs=in_chans,
out_chs=cfg.stem_width,
)
stages = []
self.num_stages = len(cfg.embed_dim)
for s, dim in enumerate(cfg.embed_dim[:2]): # stage
blocks = []
stage_in_chs = cfg.embed_dim[s-1] if s>0 else cfg.stem_width
for d in range(cfg.depths[s]):
blocks += [MbConvLNBlock(
in_chs = stage_in_chs if d==0 else dim,
out_chs = dim,
stride = 2 if d == 0 else 1,
# cfg = cfg.conv_cfg,
)]
blocks = nn.Sequential(*blocks)
stages += [blocks]
self.stages = nn.ModuleList(stages)
self.pool = StridedConv(
stride=2,
in_chans=cfg.embed_dim[1],
embed_dim=cfg.embed_dim[2]
)
def forward(self, x):
x = self.stem(x)
if self.grad_checkpointing and not torch.jit.is_scripting():
for stage in self.stages:
x = checkpoint_seq(stage, x)
x = checkpoint(self.pool, x)
else:
for stage in self.stages:
x = stage(x)
x = self.pool(x)
return x
class GeGluMlp(nn.Module):
def __init__(
self,
in_features,
hidden_features,
act_layer = None,
drop = 0.0,
):
super().__init__()
norm_layer = partial(get_norm_layer('layernorm'), eps=1e-6)
self.norm = norm_layer(in_features)
self.act = nn.GELU()
self.w0 = nn.Linear(in_features, hidden_features)
self.w1 = nn.Linear(in_features, hidden_features)
self.w2 = nn.Linear(hidden_features, in_features)
def forward(self, x):
x = self.norm(x)
x = self.act(self.w0(x)) * self.w1(x)
x = self.w2(x)
return x
class HybridEmbed(nn.Module):
""" CNN Feature Map Embedding
Extract feature map from CNN, flatten, project to embedding dim.
"""
def __init__(
self,
backbone,
img_size=224,
patch_size=1,
feature_size=None,
in_chans=3,
embed_dim=1024,
bias=True,
dynamic_img_pad=False,
):
super().__init__()
assert isinstance(backbone, nn.Module)
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
self.img_size = img_size
self.patch_size = patch_size
self.backbone = backbone
with torch.no_grad():
training = backbone.training
if training:
backbone.eval()
o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1]))
if isinstance(o, (list, tuple)):
o = o[-1] # last feature if backbone outputs list/tuple of features
feature_size = o.shape[-2:]
feature_dim = o.shape[1]
backbone.train(training)
assert feature_size[0] % patch_size[0] == 0 and feature_size[1] % patch_size[1] == 0
self.grid_size = (feature_size[0] // patch_size[0], feature_size[1] // patch_size[1])
self.num_patches = self.grid_size[0] * self.grid_size[1]
self.proj = nn.Identity()
def forward(self, x):
x = self.backbone(x)
if isinstance(x, (list, tuple)):
x = x[-1] # last feature if backbone outputs list/tuple of features
x = self.proj(x)
x = x.flatten(2).transpose(1, 2)
return x
2024-05-05 14:50:14 +08:00
def _create_vision_transformer(variant, pretrained=False, **kwargs):
if kwargs.get('features_only', None):
raise RuntimeError('features_only not implemented for Vision Transformer models.')
if 'flexi' in variant:
# FIXME Google FlexiViT pretrained models have a strong preference for bilinear patch / embed
# interpolation, other pretrained models resize better w/ anti-aliased bicubic interpolation.
_filter_fn = partial(checkpoint_filter_fn, interpolation='bilinear', antialias=False)
else:
_filter_fn = checkpoint_filter_fn
return build_model_with_cfg(
VisionTransformer,
variant,
pretrained,
pretrained_filter_fn=_filter_fn,
**kwargs,
)
def _create_vision_transformer_hybrid(variant, backbone, pretrained=False, **kwargs):
embed_layer = partial(HybridEmbed, backbone=backbone)
kwargs.setdefault('patch_size', 1) # default patch size for hybrid models if not set
return _create_vision_transformer(variant, pretrained=pretrained, embed_layer=embed_layer, **kwargs)
@register_model
def vitamin_small(pretrained=False, **kwargs) -> VisionTransformer:
stage_1_2 = MbConvStages(cfg=VitCfg(
embed_dim=(64, 128, 384),
depths=(2, 4, 1),
stem_width=64,
conv_cfg = VitConvCfg(
norm_layer='layernorm2d',
norm_eps=1e-6,
),
head_type='1d',
),
)
stage3_args = dict(embed_dim=384, depth=14, num_heads=6, mlp_layer=GeGluMlp, mlp_ratio=2., class_token=False, global_pool='avg')
model = _create_vision_transformer_hybrid('vitamin_small', backbone=stage_1_2, pretrained=pretrained, **dict(stage3_args, **kwargs))
return model
@register_model
def vitamin_base(pretrained=False, **kwargs) -> VisionTransformer:
stage_1_2 = MbConvStages(cfg=VitCfg(
embed_dim=(128, 256, 768),
depths=(2, 4, 1),
stem_width=128,
conv_cfg = VitConvCfg(
norm_layer='layernorm2d',
norm_eps=1e-6,
),
head_type='1d',
),
)
stage3_args = dict(embed_dim=768, depth=14, num_heads=12, mlp_layer=GeGluMlp, mlp_ratio=2., class_token=False, global_pool='avg')
model = _create_vision_transformer_hybrid('vitamin_base', backbone=stage_1_2, pretrained=pretrained, **dict(stage3_args, **kwargs))
return model
@register_model
def vitamin_large(pretrained=False, **kwargs) -> VisionTransformer:
stage_1_2 = MbConvStages(cfg=VitCfg(
embed_dim=(160, 320, 1024),
depths=(2, 4, 1),
stem_width=160,
conv_cfg = VitConvCfg(
norm_layer='layernorm2d',
norm_eps=1e-6,
),
head_type='1d',
),
)
stage3_args = dict(embed_dim=1024, depth=31, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2., class_token=False, global_pool='avg')
model = _create_vision_transformer_hybrid(
'vitamin_large', backbone=stage_1_2, pretrained=pretrained, **dict(stage3_args, **kwargs))
return model
2024-05-05 14:50:14 +08:00
@register_model
def vitamin_large_256(pretrained=False, **kwargs) -> VisionTransformer:
backbone = MbConvStages(cfg=VitCfg(
embed_dim=(160, 320, 1024),
depths=(2, 4, 1),
stem_width=160,
conv_cfg = VitConvCfg(
norm_layer='layernorm2d',
norm_eps=1e-6,
),
head_type='1d',
),
)
model_args = dict(img_size=256, embed_dim=1024, depth=31, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2., class_token=False, global_pool='avg')
model = _create_vision_transformer_hybrid(
'vitamin_large_256', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs))
return model
2024-05-05 14:50:14 +08:00
@register_model
def vitamin_large_336(pretrained=False, **kwargs) -> VisionTransformer:
backbone = MbConvStages(cfg=VitCfg(
embed_dim=(160, 320, 1024),
depths=(2, 4, 1),
stem_width=160,
conv_cfg = VitConvCfg(
norm_layer='layernorm2d',
norm_eps=1e-6,
),
head_type='1d',
),
)
model_args = dict(img_size=336, embed_dim=1024, depth=31, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2., class_token=False, global_pool='avg')
model = _create_vision_transformer_hybrid(
'vitamin_large_336', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs))
return model
2024-05-05 14:50:14 +08:00
@register_model
def vitamin_large_384(pretrained=False, **kwargs) -> VisionTransformer:
backbone = MbConvStages(cfg=VitCfg(
embed_dim=(160, 320, 1024),
depths=(2, 4, 1),
stem_width=160,
conv_cfg = VitConvCfg(
norm_layer='layernorm2d',
norm_eps=1e-6,
),
head_type='1d',
),
)
model_args = dict(img_size=384, embed_dim=1024, depth=31, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2., class_token=False, global_pool='avg')
model = _create_vision_transformer_hybrid(
'vitamin_large_384', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs))
return model
2024-05-05 14:50:14 +08:00
@register_model
def vitamin_xlarge_256(pretrained=False, **kwargs) -> VisionTransformer:
backbone = MbConvStages(cfg=VitCfg(
embed_dim=(192, 384, 1152),
depths=(2, 4, 1),
stem_width=192,
conv_cfg = VitConvCfg(
norm_layer='layernorm2d',
norm_eps=1e-6,
),
head_type='1d',
),
)
model_args = dict(img_size=256, embed_dim=1152, depth=32, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2., class_token=False, global_pool='avg')
model = _create_vision_transformer_hybrid(
'vitamin_xlarge_256', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs))
return model
2024-05-05 14:50:14 +08:00
@register_model
def vitamin_xlarge_336(pretrained=False, **kwargs) -> VisionTransformer:
backbone = MbConvStages(cfg=VitCfg(
embed_dim=(192, 384, 1152),
depths=(2, 4, 1),
stem_width=192,
conv_cfg = VitConvCfg(
norm_layer='layernorm2d',
norm_eps=1e-6,
),
head_type='1d',
),
)
model_args = dict(img_size=336, embed_dim=1152, depth=32, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2., class_token=False, global_pool='avg')
model = _create_vision_transformer_hybrid(
'vitamin_xlarge_256', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs))
return model
2024-05-05 14:50:14 +08:00
@register_model
def vitamin_xlarge_384(pretrained=False, **kwargs) -> VisionTransformer:
backbone = MbConvStages(cfg=VitCfg(
embed_dim=(192, 384, 1152),
depths=(2, 4, 1),
stem_width=192,
conv_cfg = VitConvCfg(
norm_layer='layernorm2d',
norm_eps=1e-6,
),
head_type='1d',
),
)
model_args = dict(img_size=384, embed_dim=1152, depth=32, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2., class_token=False, global_pool='avg')
model = _create_vision_transformer_hybrid(
'vitamin_xlarge_384', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs))
return model