pytorch-image-models/timm/data/naflex_random_erasing.py

312 lines
12 KiB
Python
Raw Normal View History

import random
import math
from typing import Optional, Union, Tuple
import torch
class PatchRandomErasing:
"""
Random erasing for patchified images in NaFlex format.
Supports three modes:
1. 'patch': Simple mode that erases randomly selected valid patches
2. 'region': Erases rectangular regions at patch granularity
Args:
erase_prob: Probability that the Random Erasing operation will be performed.
patch_drop_prob: Patch dropout probability. Remove random patches instead of erasing.
min_area: Minimum percentage of valid patches/area to erase.
max_area: Maximum percentage of valid patches/area to erase.
min_aspect: Minimum aspect ratio of erased area (only used in 'region' mode).
max_aspect: Maximum aspect ratio of erased area (only used in 'region' mode).
mode: Patch content mode, one of 'const', 'rand', or 'pixel'
'const' - erase patch is constant color of 0 for all channels
'rand' - erase patch has same random (normal) value across all elements
'pixel' - erase patch has per-element random (normal) values
spatial_mode: Erasing strategy, one of 'patch', 'region', or 'subregion'
patch_size: Size of each patch (required for 'subregion' mode)
num_splits: Number of splits to apply erasing to (0 for all)
device: Computation device
"""
def __init__(
self,
erase_prob: float = 0.5,
patch_drop_prob: float = 0.0,
min_count: int = 1,
max_count: Optional[int] = None,
min_area: float = 0.02,
max_area: float = 1 / 3,
min_aspect: float = 0.3,
max_aspect: Optional[float] = None,
mode: str = 'const',
value: float = 0.,
spatial_mode: str = 'region',
num_splits: int = 0,
device: Union[str, torch.device] = 'cuda',
):
self.erase_prob = erase_prob
self.patch_drop_prob = patch_drop_prob
self.min_count = min_count
self.max_count = max_count or min_count
self.min_area = min_area
self.max_area = max_area
# Aspect ratio params (for region mode)
max_aspect = max_aspect or 1 / min_aspect
self.log_aspect_ratio = (math.log(min_aspect), math.log(max_aspect))
# Number of splits
self.num_splits = num_splits
self.device = device
# Strategy mode
self.spatial_mode = spatial_mode
assert self.spatial_mode in ('patch', 'region')
# Value generation mode flags
self.erase_mode = mode.lower()
assert self.erase_mode in ('rand', 'pixel', 'const')
self.const_value = value
self.unique_noise_per_patch = True
def _get_values(
self,
shape: Union[Tuple[int,...], torch.Size],
value: Optional[torch.Tensor] = None,
dtype: torch.dtype = torch.float32,
device: Optional[Union[str, torch.device]] = None
):
"""Generate values for erased patches based on the specified mode.
Args:
shape: Shape of patches to erase.
value: Value to use in const (or rand) mode.
dtype: Data type to use.
device: Device to use.
"""
device = device or self.device
if self.erase_mode == 'pixel':
# only mode with erase shape that includes pixels
return torch.empty(shape, dtype=dtype, device=device).normal_()
else:
shape = (1, 1, shape[-1]) if len(shape) == 3 else (1, shape[-1])
if self.erase_mode == 'const' or value is not None:
erase_value = value or self.const_value
if isinstance(erase_value, (int, float)):
values = torch.full(shape, erase_value, dtype=dtype, device=device)
else:
erase_value = torch.tensor(erase_value, dtype=dtype, device=device)
values = torch.expand_copy(erase_value, shape)
else:
values = torch.empty(shape, dtype=dtype, device=device).normal_()
return values
def _drop_patches(
self,
patches: torch.Tensor,
patch_coord: torch.Tensor,
patch_valid: torch.Tensor,
):
""" Patch Dropout
Fully drops patches from datastream. Only mode that saves compute BUT requires support
for non-contiguous patches and associated patch coordinate and valid handling.
"""
# FIXME WIP, not completed. Downstream support in model needed for non-contiguous valid patches
if random.random() > self.erase_prob:
return
# Get indices of valid patches
valid_indices = torch.nonzero(patch_valid, as_tuple=True)[0].tolist()
# Skip if no valid patches
if not valid_indices:
return patches, patch_coord, patch_valid
num_valid = len(valid_indices)
if self.patch_drop_prob:
# patch dropout mode, completely remove dropped patches (FIXME needs downstream support in model)
num_keep = max(1, int(num_valid * (1. - self.patch_drop_prob)))
keep_indices = torch.argsort(torch.randn(1, num_valid, device=self.device), dim=-1)[:, :num_keep]
# maintain patch order, possibly useful for debug / visualization
keep_indices = keep_indices.sort(dim=-1)[0]
patches = patches.gather(1, keep_indices.unsqueeze(-1).expand((-1, -1) + patches.shape[2:]))
return patches, patch_coord, patch_valid
def _erase_patches(
self,
patches: torch.Tensor,
patch_coord: torch.Tensor,
patch_valid: torch.Tensor,
patch_shape: torch.Size,
dtype: torch.dtype = torch.float32,
):
"""Apply erasing by selecting individual patches randomly.
The simplest mode, aligned on patch boundaries. Behaves similarly to speckle or 'sprinkles'
noise augmentation at patch size.
"""
if random.random() > self.erase_prob:
return
# Get indices of valid patches
valid_indices = torch.nonzero(patch_valid, as_tuple=True)[0]
num_valid = len(valid_indices)
if num_valid == 0:
return
count = random.randint(self.min_count, self.max_count)
# Determine how many valid patches to erase from RE min/max count and area args
max_erase = min(num_valid, max(1, int(num_valid * count * self.max_area)))
min_erase = max(1, int(num_valid * count * self.min_area))
num_erase = random.randint(min_erase, max_erase)
# Randomly select valid patches to erase
erase_idx = valid_indices[torch.randperm(num_valid, device=patches.device)[:num_erase]]
if self.unique_noise_per_patch and self.erase_mode == 'pixel':
# generate unique noise for the whole selection of patches
fill_shape = (num_erase,) + patch_shape
else:
fill_shape = patch_shape
patches[erase_idx] = self._get_values(fill_shape, dtype=dtype)
def _erase_region(
self,
patches: torch.Tensor,
patch_coord: torch.Tensor,
patch_valid: torch.Tensor,
patch_shape: torch.Size,
dtype: torch.dtype = torch.float32,
):
"""Apply erasing by selecting rectangular regions of patches randomly
Closer to the original RandomErasing implementation. Erases
spatially contiguous rectangular regions of patches (aligned with patches).
"""
if random.random() > self.erase_prob:
return
# Determine grid dimensions from coordinates
valid_coord = patch_coord[patch_valid]
if len(valid_coord) == 0:
return # No valid patches
max_y = valid_coord[:, 0].max().item() + 1
max_x = valid_coord[:, 1].max().item() + 1
grid_h, grid_w = max_y, max_x
total_area = grid_h * grid_w
ys, xs = patch_coord[:, 0], patch_coord[:, 1]
count = random.randint(self.min_count, self.max_count)
for _ in range(count):
# Try to select a valid region to erase (multiple attempts)
for attempt in range(10):
# Sample random area and aspect ratio
target_area = random.uniform(self.min_area, self.max_area) * total_area
aspect_ratio = math.exp(random.uniform(*self.log_aspect_ratio))
# Calculate region height and width
h = int(round(math.sqrt(target_area * aspect_ratio)))
w = int(round(math.sqrt(target_area / aspect_ratio)))
if h > grid_h or w > grid_w:
continue # try again
# Calculate region patch bounds
top = random.randint(0, grid_h - h)
left = random.randint(0, grid_w - w)
bottom, right = top + h, left + w
# Region test
region_mask = (
(ys >= top) & (ys < bottom) &
(xs >= left) & (xs < right) &
patch_valid
)
num_selected = int(region_mask.sum().item())
if not num_selected:
continue # no patch actually falls inside try again
if self.unique_noise_per_patch and self.erase_mode == 'pixel':
# generate unique noise for the whole region
fill_shape = (num_selected,) + patch_shape
else:
fill_shape = patch_shape
patches[region_mask] = self._get_values(fill_shape, dtype=dtype)
# Successfully applied erasing, exit the loop
break
def __call__(
self,
patches: torch.Tensor,
patch_coord: torch.Tensor,
patch_valid: Optional[torch.Tensor] = None,
):
"""
Apply random patch erasing.
Args:
patches: Tensor of shape [B, N, P*P, C]
patch_coord: Tensor of shape [B, N, 2] with (y, x) coordinates
patch_valid: Boolean tensor of shape [B, N] indicating which patches are valid
If None, all patches are considered valid
Returns:
Erased patches tensor of same shape
"""
if patches.ndim == 4:
batch_size, num_patches, patch_dim, channels = patches.shape
elif patches.ndim == 5:
batch_size, num_patches, patch_h, patch_w, channels = patches.shape
else:
assert False
patch_shape = patches.shape[2:]
# patch_shape ==> shape of patches to fill (h, w, c) or (h * w, c)
# Create default valid mask if not provided
if patch_valid is None:
patch_valid = torch.ones((batch_size, num_patches), dtype=torch.bool, device=patches.device)
# Skip the first part of the batch if num_splits is set
batch_start = batch_size // self.num_splits if self.num_splits > 1 else 0
# Apply erasing to each batch element
for i in range(batch_start, batch_size):
if self.patch_drop_prob:
assert False, "WIP, not completed"
self._drop_patches(
patches[i],
patch_coord[i],
patch_valid[i],
)
elif self.spatial_mode == 'patch':
# FIXME we could vectorize patch mode across batch, worth the effort?
self._erase_patches(
patches[i],
patch_coord[i],
patch_valid[i],
patch_shape,
patches.dtype
)
elif self.spatial_mode == 'region':
self._erase_region(
patches[i],
patch_coord[i],
patch_valid[i],
patch_shape,
patches.dtype
)
else:
assert False
return patches
def __repr__(self):
fs = self.__class__.__name__ + f'(p={self.erase_prob}, mode={self.erase_mode}'
fs += f', spatial={self.spatial_mode}, area=({self.min_area}, {self.max_area}))'
fs += f', count=({self.min_count}, {self.max_count}))'
return fs