pytorch-image-models/timm/models/selecsls.py

295 lines
10 KiB
Python
Raw Normal View History

2019-12-29 06:06:00 +08:00
"""PyTorch SelecSLS Net example for ImageNet Classification
License: CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/legalcode)
Author: Dushyant Mehta (@mehtadushy)
2019-12-29 03:41:55 +08:00
2019-12-29 06:06:00 +08:00
SelecSLS (core) Network Architecture as proposed in "XNect: Real-time Multi-person 3D
Human Pose Estimation with a Single RGB Camera, Mehta et al."
2019-12-29 03:41:55 +08:00
https://arxiv.org/abs/1907.00837
2019-12-29 06:06:00 +08:00
Based on ResNet implementation in https://github.com/rwightman/pytorch-image-models
and SelecSLS Net implementation in https://github.com/mehtadushy/SelecSLS-Pytorch
2019-12-29 03:41:55 +08:00
"""
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from .registry import register_model
from .helpers import load_pretrained
from .layers import SelectAdaptivePool2d
2019-12-29 03:41:55 +08:00
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
__all__ = ['SelecSLS'] # model_registry will add each entrypoint fn to this
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (3, 3),
'crop_pct': 0.875, 'interpolation': 'bilinear',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'stem', 'classifier': 'fc',
**kwargs
}
default_cfgs = {
'selecsls42': _cfg(
url='',
interpolation='bicubic'),
'selecsls42b': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-selecsls/selecsls42b-8af30141.pth',
2019-12-29 06:06:00 +08:00
interpolation='bicubic'),
2019-12-29 03:41:55 +08:00
'selecsls60': _cfg(
2020-01-01 08:49:04 +08:00
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-selecsls/selecsls60-bbf87526.pth',
2019-12-29 03:41:55 +08:00
interpolation='bicubic'),
'selecsls60b': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-selecsls/selecsls60b-94e619b5.pth',
2019-12-29 03:41:55 +08:00
interpolation='bicubic'),
'selecsls84': _cfg(
url='',
interpolation='bicubic'),
}
def conv_bn(in_chs, out_chs, k=3, stride=1, padding=None, dilation=1):
if padding is None:
padding = ((stride - 1) + dilation * (k - 1)) // 2
2019-12-29 03:41:55 +08:00
return nn.Sequential(
nn.Conv2d(in_chs, out_chs, k, stride, padding=padding, dilation=dilation, bias=False),
nn.BatchNorm2d(out_chs),
2019-12-29 03:41:55 +08:00
nn.ReLU(inplace=True)
)
2019-12-29 03:41:55 +08:00
class SelecSLSBlock(nn.Module):
def __init__(self, in_chs, skip_chs, mid_chs, out_chs, is_first, stride, dilation=1):
2019-12-29 03:41:55 +08:00
super(SelecSLSBlock, self).__init__()
self.stride = stride
self.is_first = is_first
2019-12-29 03:41:55 +08:00
assert stride in [1, 2]
# Process input with 4 conv blocks with the same number of input and output channels
self.conv1 = conv_bn(in_chs, mid_chs, 3, stride, dilation=dilation)
self.conv2 = conv_bn(mid_chs, mid_chs, 1)
self.conv3 = conv_bn(mid_chs, mid_chs // 2, 3)
self.conv4 = conv_bn(mid_chs // 2, mid_chs, 1)
self.conv5 = conv_bn(mid_chs, mid_chs // 2, 3)
self.conv6 = conv_bn(2 * mid_chs + (0 if is_first else skip_chs), out_chs, 1)
2019-12-29 03:41:55 +08:00
def forward(self, x):
assert isinstance(x, list)
assert len(x) in [1, 2]
2019-12-29 03:41:55 +08:00
d1 = self.conv1(x[0])
d2 = self.conv3(self.conv2(d1))
d3 = self.conv5(self.conv4(d2))
if self.is_first:
2019-12-29 03:41:55 +08:00
out = self.conv6(torch.cat([d1, d2, d3], 1))
return [out, out]
else:
return [self.conv6(torch.cat([d1, d2, d3, x[1]], 1)), x[1]]
2019-12-29 03:41:55 +08:00
class SelecSLS(nn.Module):
"""SelecSLS42 / SelecSLS60 / SelecSLS84
Parameters
----------
cfg : network config dictionary specifying block type, feature, and head args
2019-12-29 03:41:55 +08:00
num_classes : int, default 1000
Number of classification classes.
in_chans : int, default 3
Number of input (color) channels.
drop_rate : float, default 0.
Dropout probability before classifier, for training
global_pool : str, default 'avg'
Global pooling type. One of 'avg', 'max', 'avgmax', 'catavgmax'
"""
def __init__(self, cfg, num_classes=1000, in_chans=3, drop_rate=0.0, global_pool='avg'):
2019-12-29 03:41:55 +08:00
self.num_classes = num_classes
self.drop_rate = drop_rate
super(SelecSLS, self).__init__()
self.stem = conv_bn(in_chans, 32, stride=2)
self.features = nn.Sequential(*[cfg['block'](*block_args) for block_args in cfg['features']])
self.head = nn.Sequential(*[conv_bn(*conv_args) for conv_args in cfg['head']])
self.num_features = cfg['num_features']
2019-12-29 03:41:55 +08:00
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
self.fc = nn.Linear(self.num_features * self.global_pool.feat_mult(), num_classes)
for n, m in self.named_modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1.)
nn.init.constant_(m.bias, 0.)
def get_classifier(self):
return self.fc
def reset_classifier(self, num_classes, global_pool='avg'):
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
self.num_classes = num_classes
del self.fc
if num_classes:
self.fc = nn.Linear(self.num_features * self.global_pool.feat_mult(), num_classes)
else:
self.fc = None
def forward_features(self, x):
2019-12-29 03:41:55 +08:00
x = self.stem(x)
x = self.features([x])
x = self.head(x[0])
return x
def forward(self, x):
x = self.forward_features(x)
x = self.global_pool(x).flatten(1)
2019-12-29 03:41:55 +08:00
if self.drop_rate > 0.:
x = F.dropout(x, p=self.drop_rate, training=self.training)
x = self.fc(x)
return x
def _create_model(variant, pretrained, model_kwargs):
cfg = {}
if variant.startswith('selecsls42'):
cfg['block'] = SelecSLSBlock
# Define configuration of the network after the initial neck
cfg['features'] = [
# in_chs, skip_chs, mid_chs, out_chs, is_first, stride
(32, 0, 64, 64, True, 2),
(64, 64, 64, 128, False, 1),
(128, 0, 144, 144, True, 2),
(144, 144, 144, 288, False, 1),
(288, 0, 304, 304, True, 2),
(304, 304, 304, 480, False, 1),
]
# Head can be replaced with alternative configurations depending on the problem
if variant == 'selecsls42b':
cfg['head'] = [
(480, 960, 3, 2),
(960, 1024, 3, 1),
(1024, 1280, 3, 2),
(1280, 1024, 1, 1),
]
cfg['num_features'] = 1024
else:
cfg['head'] = [
(480, 960, 3, 2),
(960, 1024, 3, 1),
(1024, 1024, 3, 2),
(1024, 1280, 1, 1),
]
cfg['num_features'] = 1280
elif variant.startswith('selecsls60'):
cfg['block'] = SelecSLSBlock
# Define configuration of the network after the initial neck
cfg['features'] = [
# in_chs, skip_chs, mid_chs, out_chs, is_first, stride
(32, 0, 64, 64, True, 2),
(64, 64, 64, 128, False, 1),
(128, 0, 128, 128, True, 2),
(128, 128, 128, 128, False, 1),
(128, 128, 128, 288, False, 1),
(288, 0, 288, 288, True, 2),
(288, 288, 288, 288, False, 1),
(288, 288, 288, 288, False, 1),
(288, 288, 288, 416, False, 1),
]
# Head can be replaced with alternative configurations depending on the problem
if variant == 'selecsls60b':
cfg['head'] = [
(416, 756, 3, 2),
(756, 1024, 3, 1),
(1024, 1280, 3, 2),
(1280, 1024, 1, 1),
]
cfg['num_features'] = 1024
else:
cfg['head'] = [
(416, 756, 3, 2),
(756, 1024, 3, 1),
(1024, 1024, 3, 2),
(1024, 1280, 1, 1),
]
cfg['num_features'] = 1280
elif variant == 'selecsls84':
cfg['block'] = SelecSLSBlock
# Define configuration of the network after the initial neck
cfg['features'] = [
# in_chs, skip_chs, mid_chs, out_chs, is_first, stride
(32, 0, 64, 64, True, 2),
(64, 64, 64, 144, False, 1),
(144, 0, 144, 144, True, 2),
(144, 144, 144, 144, False, 1),
(144, 144, 144, 144, False, 1),
(144, 144, 144, 144, False, 1),
(144, 144, 144, 304, False, 1),
(304, 0, 304, 304, True, 2),
(304, 304, 304, 304, False, 1),
(304, 304, 304, 304, False, 1),
(304, 304, 304, 304, False, 1),
(304, 304, 304, 304, False, 1),
(304, 304, 304, 512, False, 1),
]
# Head can be replaced with alternative configurations depending on the problem
cfg['head'] = [
(512, 960, 3, 2),
(960, 1024, 3, 1),
(1024, 1024, 3, 2),
(1024, 1280, 3, 1),
]
cfg['num_features'] = 1280
else:
raise ValueError('Invalid net configuration ' + variant + ' !!!')
model = SelecSLS(cfg, **model_kwargs)
model.default_cfg = default_cfgs[variant]
if pretrained:
load_pretrained(
model,
num_classes=model_kwargs.get('num_classes', 0),
in_chans=model_kwargs.get('in_chans', 3),
strict=True)
return model
2019-12-29 03:41:55 +08:00
@register_model
def selecsls42(pretrained=False, **kwargs):
2019-12-29 03:41:55 +08:00
"""Constructs a SelecSLS42 model.
"""
return _create_model('selecsls42', pretrained, kwargs)
2019-12-29 03:41:55 +08:00
2019-12-29 03:41:55 +08:00
@register_model
def selecsls42b(pretrained=False, **kwargs):
2019-12-29 06:06:00 +08:00
"""Constructs a SelecSLS42_B model.
2019-12-29 03:41:55 +08:00
"""
return _create_model('selecsls42b', pretrained, kwargs)
2019-12-29 03:41:55 +08:00
2019-12-29 03:41:55 +08:00
@register_model
def selecsls60(pretrained=False, **kwargs):
2019-12-29 03:41:55 +08:00
"""Constructs a SelecSLS60 model.
"""
return _create_model('selecsls60', pretrained, kwargs)
2019-12-29 03:41:55 +08:00
@register_model
def selecsls60b(pretrained=False, **kwargs):
2019-12-29 06:06:00 +08:00
"""Constructs a SelecSLS60_B model.
2019-12-29 03:41:55 +08:00
"""
return _create_model('selecsls60b', pretrained, kwargs)
2019-12-29 03:41:55 +08:00
2019-12-29 03:41:55 +08:00
@register_model
def selecsls84(pretrained=False, **kwargs):
2019-12-29 03:41:55 +08:00
"""Constructs a SelecSLS84 model.
"""
return _create_model('selecsls84', pretrained, kwargs)