Merge pull request #2258 from huggingface/sbb2_vit_hiera_weights

Update Hiera model for abswin & add more in12k weights for hiera & vit
This commit is contained in:
Ross Wightman 2024-08-21 12:50:15 -07:00 committed by GitHub
commit 00c5be7656
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
12 changed files with 941 additions and 92 deletions

View File

@ -52,14 +52,14 @@ FEAT_INTER_FILTERS = [
'vision_transformer', 'vision_transformer_sam', 'vision_transformer_hybrid', 'vision_transformer_relpos', 'vision_transformer', 'vision_transformer_sam', 'vision_transformer_hybrid', 'vision_transformer_relpos',
'beit', 'mvitv2', 'eva', 'cait', 'xcit', 'volo', 'twins', 'deit', 'swin_transformer', 'swin_transformer_v2', 'beit', 'mvitv2', 'eva', 'cait', 'xcit', 'volo', 'twins', 'deit', 'swin_transformer', 'swin_transformer_v2',
'swin_transformer_v2_cr', 'maxxvit', 'efficientnet', 'mobilenetv3', 'levit', 'efficientformer', 'resnet', 'swin_transformer_v2_cr', 'maxxvit', 'efficientnet', 'mobilenetv3', 'levit', 'efficientformer', 'resnet',
'regnet', 'byobnet', 'byoanet', 'mlp_mixer', 'hiera', 'fastvit', 'regnet', 'byobnet', 'byoanet', 'mlp_mixer', 'hiera', 'fastvit', 'hieradet_sam2'
] ]
# transformer / hybrid models don't support full set of spatial / feature APIs and/or have spatial output. # transformer / hybrid models don't support full set of spatial / feature APIs and/or have spatial output.
NON_STD_FILTERS = [ NON_STD_FILTERS = [
'vit_*', 'tnt_*', 'pit_*', 'coat_*', 'cait_*', '*mixer_*', 'gmlp_*', 'resmlp_*', 'twins_*', 'vit_*', 'tnt_*', 'pit_*', 'coat_*', 'cait_*', '*mixer_*', 'gmlp_*', 'resmlp_*', 'twins_*',
'convit_*', 'levit*', 'visformer*', 'deit*', 'xcit_*', 'crossvit_*', 'beit*', 'convit_*', 'levit*', 'visformer*', 'deit*', 'xcit_*', 'crossvit_*', 'beit*',
'poolformer_*', 'volo_*', 'sequencer2d_*', 'mvitv2*', 'gcvit*', 'efficientformer*', 'poolformer_*', 'volo_*', 'sequencer2d_*', 'mvitv2*', 'gcvit*', 'efficientformer*', 'sam_hiera*',
'eva_*', 'flexivit*', 'eva02*', 'samvit_*', 'efficientvit_m*', 'tiny_vit_*', 'hiera_*', 'vitamin*', 'test_vit*', 'eva_*', 'flexivit*', 'eva02*', 'samvit_*', 'efficientvit_m*', 'tiny_vit_*', 'hiera_*', 'vitamin*', 'test_vit*',
] ]
NUM_NON_STD = len(NON_STD_FILTERS) NUM_NON_STD = len(NON_STD_FILTERS)

View File

@ -5,7 +5,7 @@ from .attention2d import MultiQueryAttention2d, Attention2d, MultiQueryAttention
from .attention_pool import AttentionPoolLatent from .attention_pool import AttentionPoolLatent
from .attention_pool2d import AttentionPool2d, RotAttentionPool2d, RotaryEmbedding from .attention_pool2d import AttentionPool2d, RotAttentionPool2d, RotaryEmbedding
from .blur_pool import BlurPool2d, create_aa from .blur_pool import BlurPool2d, create_aa
from .classifier import ClassifierHead, create_classifier, NormMlpClassifierHead from .classifier import create_classifier, ClassifierHead, NormMlpClassifierHead, ClNormMlpClassifierHead
from .cond_conv2d import CondConv2d, get_condconv_initializer from .cond_conv2d import CondConv2d, get_condconv_initializer
from .config import is_exportable, is_scriptable, is_no_jit, use_fused_attn, \ from .config import is_exportable, is_scriptable, is_no_jit, use_fused_attn, \
set_exportable, set_scriptable, set_no_jit, set_layer_config, set_fused_attn set_exportable, set_scriptable, set_no_jit, set_layer_config, set_fused_attn
@ -29,6 +29,7 @@ from .grid import ndgrid, meshgrid
from .helpers import to_ntuple, to_2tuple, to_3tuple, to_4tuple, make_divisible, extend_tuple from .helpers import to_ntuple, to_2tuple, to_3tuple, to_4tuple, make_divisible, extend_tuple
from .hybrid_embed import HybridEmbed, HybridEmbedWithSize from .hybrid_embed import HybridEmbed, HybridEmbedWithSize
from .inplace_abn import InplaceAbn from .inplace_abn import InplaceAbn
from .layer_scale import LayerScale, LayerScale2d
from .linear import Linear from .linear import Linear
from .mixed_conv2d import MixedConv2d from .mixed_conv2d import MixedConv2d
from .mlp import Mlp, GluMlp, GatedMlp, SwiGLU, SwiGLUPacked, ConvMlp, GlobalResponseNormMlp from .mlp import Mlp, GluMlp, GatedMlp, SwiGLU, SwiGLUPacked, ConvMlp, GlobalResponseNormMlp
@ -56,4 +57,5 @@ from .std_conv import StdConv2d, StdConv2dSame, ScaledStdConv2d, ScaledStdConv2d
from .test_time_pool import TestTimePoolHead, apply_test_time_pool from .test_time_pool import TestTimePoolHead, apply_test_time_pool
from .trace_utils import _assert, _float_to_int from .trace_utils import _assert, _float_to_int
from .typing import LayerType, PadType from .typing import LayerType, PadType
from .weight_init import trunc_normal_, trunc_normal_tf_, variance_scaling_, lecun_normal_ from .weight_init import trunc_normal_, trunc_normal_tf_, variance_scaling_, lecun_normal_, \
init_weight_jax, init_weight_vit

View File

@ -134,7 +134,8 @@ class ClassifierHead(nn.Module):
class NormMlpClassifierHead(nn.Module): class NormMlpClassifierHead(nn.Module):
""" A Pool -> Norm -> Mlp Classifier Head for '2D' NCHW tensors
"""
def __init__( def __init__(
self, self,
in_features: int, in_features: int,
@ -204,3 +205,79 @@ class NormMlpClassifierHead(nn.Module):
return x return x
x = self.fc(x) x = self.fc(x)
return x return x
class ClNormMlpClassifierHead(nn.Module):
""" A Pool -> Norm -> Mlp Classifier Head for n-D NxxC tensors
"""
def __init__(
self,
in_features: int,
num_classes: int,
hidden_size: Optional[int] = None,
pool_type: str = 'avg',
drop_rate: float = 0.,
norm_layer: Union[str, Callable] = 'layernorm',
act_layer: Union[str, Callable] = 'gelu',
input_fmt: str = 'NHWC',
):
"""
Args:
in_features: The number of input features.
num_classes: The number of classes for the final classifier layer (output).
hidden_size: The hidden size of the MLP (pre-logits FC layer) if not None.
pool_type: Global pooling type, pooling disabled if empty string ('').
drop_rate: Pre-classifier dropout rate.
norm_layer: Normalization layer type.
act_layer: MLP activation layer type (only used if hidden_size is not None).
"""
super().__init__()
self.in_features = in_features
self.hidden_size = hidden_size
self.num_features = in_features
assert pool_type in ('', 'avg', 'max', 'avgmax')
self.pool_type = pool_type
assert input_fmt in ('NHWC', 'NLC')
self.pool_dim = 1 if input_fmt == 'NLC' else (1, 2)
norm_layer = get_norm_layer(norm_layer)
act_layer = get_act_layer(act_layer)
self.norm = norm_layer(in_features)
if hidden_size:
self.pre_logits = nn.Sequential(OrderedDict([
('fc', nn.Linear(in_features, hidden_size)),
('act', act_layer()),
]))
self.num_features = hidden_size
else:
self.pre_logits = nn.Identity()
self.drop = nn.Dropout(drop_rate)
self.fc = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
def reset(self, num_classes: int, pool_type: Optional[str] = None, reset_other: bool = False):
if pool_type is not None:
self.pool_type = pool_type
if reset_other:
self.pre_logits = nn.Identity()
self.norm = nn.Identity()
self.fc = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
def _global_pool(self, x):
if self.pool_type:
if self.pool_type == 'avg':
x = x.mean(dim=self.pool_dim)
elif self.pool_type == 'max':
x = x.amax(dim=self.pool_dim)
elif self.pool_type == 'avgmax':
x = 0.5 * (x.amax(dim=self.pool_dim) + x.mean(dim=self.pool_dim))
return x
def forward(self, x, pre_logits: bool = False):
x = self._global_pool(x)
x = self.norm(x)
x = self.pre_logits(x)
x = self.drop(x)
if pre_logits:
return x
x = self.fc(x)
return x

View File

@ -97,6 +97,7 @@ def get_act_fn(name: Union[Callable, str] = 'relu'):
return None return None
if isinstance(name, Callable): if isinstance(name, Callable):
return name return name
name = name.lower()
if not (is_exportable() or is_scriptable()): if not (is_exportable() or is_scriptable()):
# If not exporting or scripting the model, first look for a memory-efficient version with # If not exporting or scripting the model, first look for a memory-efficient version with
# custom autograd, then fallback # custom autograd, then fallback
@ -117,6 +118,7 @@ def get_act_layer(name: Union[Type[nn.Module], str] = 'relu'):
return name return name
if not name: if not name:
return None return None
name = name.lower()
if not (is_exportable() or is_scriptable()): if not (is_exportable() or is_scriptable()):
if name in _ACT_LAYER_ME: if name in _ACT_LAYER_ME:
return _ACT_LAYER_ME[name] return _ACT_LAYER_ME[name]

View File

@ -0,0 +1,38 @@
import torch
from torch import nn
class LayerScale(nn.Module):
""" LayerScale on tensors with channels in last-dim.
"""
def __init__(
self,
dim: int,
init_values: float = 1e-5,
inplace: bool = False,
) -> None:
super().__init__()
self.inplace = inplace
self.gamma = nn.Parameter(init_values * torch.ones(dim))
def forward(self, x: torch.Tensor) -> torch.Tensor:
return x.mul_(self.gamma) if self.inplace else x * self.gamma
class LayerScale2d(nn.Module):
""" LayerScale for tensors with torch 2D NCHW layout.
"""
def __init__(
self,
dim: int,
init_values: float = 1e-5,
inplace: bool = False,
):
super().__init__()
self.inplace = inplace
self.gamma = nn.Parameter(init_values * torch.ones(dim))
def forward(self, x):
gamma = self.gamma.view(1, -1, 1, 1)
return x.mul_(gamma) if self.inplace else x * gamma

View File

@ -1,7 +1,7 @@
import torch import torch
import math import math
import warnings import warnings
from torch import nn
from torch.nn.init import _calculate_fan_in_and_fan_out from torch.nn.init import _calculate_fan_in_and_fan_out
@ -123,3 +123,45 @@ def variance_scaling_(tensor, scale=1.0, mode='fan_in', distribution='normal'):
def lecun_normal_(tensor): def lecun_normal_(tensor):
variance_scaling_(tensor, mode='fan_in', distribution='truncated_normal') variance_scaling_(tensor, mode='fan_in', distribution='truncated_normal')
def init_weight_vit(
module: nn.Module,
name: str,
init_bias: float = 0.02,
head_bias: float = 0.,
classifier_name: str = 'head'
):
if isinstance(module, (nn.Linear, nn.Conv1d, nn.Conv2d, nn.Conv3d)):
if name.startswith(classifier_name):
nn.init.zeros_(module.weight)
nn.init.constant_(module.bias, head_bias)
else:
nn.init.trunc_normal_(module.weight, std=0.02)
if isinstance(module, nn.Linear) and module.bias is not None:
nn.init.constant_(module.bias, init_bias)
elif hasattr(module, 'init_weights'):
module.init_weights()
def init_weight_jax(
module: nn.Module,
name: str,
head_bias: float = 0.,
classifier_name: str = 'head',
):
if isinstance(module, nn.Linear):
if name.startswith(classifier_name):
nn.init.zeros_(module.weight)
nn.init.constant_(module.bias, head_bias)
else:
nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.normal_(module.bias, std=1e-6) if 'mlp' in name else nn.init.zeros_(module.bias)
elif isinstance(module, nn.Conv2d):
lecun_normal_(module.weight)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif hasattr(module, 'init_weights'):
module.init_weights()

View File

@ -27,6 +27,7 @@ from .ghostnet import *
from .hardcorenas import * from .hardcorenas import *
from .hgnet import * from .hgnet import *
from .hiera import * from .hiera import *
from .hieradet_sam2 import *
from .hrnet import * from .hrnet import *
from .inception_next import * from .inception_next import *
from .inception_resnet_v2 import * from .inception_resnet_v2 import *

View File

@ -1290,8 +1290,12 @@ default_cfgs = generate_default_cfgs({
'efficientnet_b0.ra4_e3600_r224_in1k': _cfg( 'efficientnet_b0.ra4_e3600_r224_in1k': _cfg(
hf_hub_id='timm/', hf_hub_id='timm/',
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD,
crop_pct=0.9, test_input_size=(3, 256, 256), test_crop_pct=1.0 crop_pct=0.9, test_input_size=(3, 256, 256), test_crop_pct=1.0),
), 'efficientnet_b1.ra4_e3600_r240_in1k': _cfg(
hf_hub_id='timm/',
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD,
input_size=(3, 240, 240), crop_pct=0.9, pool_size=(8, 8),
test_input_size=(3, 288, 288), test_crop_pct=1.0),
'efficientnet_b1.ft_in1k': _cfg( 'efficientnet_b1.ft_in1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b1-533bc792.pth', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b1-533bc792.pth',
hf_hub_id='timm/', hf_hub_id='timm/',

View File

@ -31,15 +31,15 @@ import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
from torch.utils.checkpoint import checkpoint from torch.utils.checkpoint import checkpoint
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import DropPath, Mlp, use_fused_attn, _assert, get_norm_layer, to_2tuple from timm.layers import DropPath, Mlp, LayerScale, ClNormMlpClassifierHead, use_fused_attn, \
_assert, get_norm_layer, to_2tuple, init_weight_vit, init_weight_jax
from ._registry import generate_default_cfgs, register_model from ._registry import generate_default_cfgs, register_model
from ._builder import build_model_with_cfg from ._builder import build_model_with_cfg
from ._features import feature_take_indices from ._features import feature_take_indices
from ._features_fx import register_notrace_function from ._features_fx import register_notrace_function
from ._manipulate import named_apply
__all__ = ['Hiera'] __all__ = ['Hiera']
@ -288,7 +288,6 @@ class MaskUnitAttention(nn.Module):
""" Input should be of shape [batch, tokens, channels]. """ """ Input should be of shape [batch, tokens, channels]. """
B, N, _ = x.shape B, N, _ = x.shape
num_windows = (N // (self.q_stride * self.window_size)) if self.use_mask_unit_attn else 1 num_windows = (N // (self.q_stride * self.window_size)) if self.use_mask_unit_attn else 1
qkv = self.qkv(x).reshape(B, -1, num_windows, 3, self.heads, self.head_dim).permute(3, 0, 4, 2, 1, 5) qkv = self.qkv(x).reshape(B, -1, num_windows, 3, self.heads, self.head_dim).permute(3, 0, 4, 2, 1, 5)
q, k, v = qkv.unbind(0) q, k, v = qkv.unbind(0)
@ -317,6 +316,7 @@ class HieraBlock(nn.Module):
heads: int, heads: int,
mlp_ratio: float = 4.0, mlp_ratio: float = 4.0,
drop_path: float = 0.0, drop_path: float = 0.0,
init_values: Optional[float] = None,
norm_layer: nn.Module = nn.LayerNorm, norm_layer: nn.Module = nn.LayerNorm,
act_layer: nn.Module = nn.GELU, act_layer: nn.Module = nn.GELU,
q_stride: int = 1, q_stride: int = 1,
@ -325,7 +325,6 @@ class HieraBlock(nn.Module):
use_mask_unit_attn: bool = False, use_mask_unit_attn: bool = False,
): ):
super().__init__() super().__init__()
self.dim = dim self.dim = dim
self.dim_out = dim_out self.dim_out = dim_out
@ -348,13 +347,14 @@ class HieraBlock(nn.Module):
window_size, window_size,
use_mask_unit_attn use_mask_unit_attn
) )
self.ls1 = LayerScale(dim_out, init_values=init_values) if init_values is not None else nn.Identity()
self.drop_path1 = DropPath(drop_path) if drop_path > 0 else nn.Identity() self.drop_path1 = DropPath(drop_path) if drop_path > 0 else nn.Identity()
self.norm2 = norm_layer(dim_out) self.norm2 = norm_layer(dim_out)
self.mlp = Mlp(dim_out, int(dim_out * mlp_ratio), act_layer=act_layer) self.mlp = Mlp(dim_out, int(dim_out * mlp_ratio), act_layer=act_layer)
self.ls2 = LayerScale(dim_out, init_values=init_values) if init_values is not None else nn.Identity()
self.drop_path2 = DropPath(drop_path) if drop_path > 0 else nn.Identity() self.drop_path2 = DropPath(drop_path) if drop_path > 0 else nn.Identity()
def forward(self, x: torch.Tensor) -> torch.Tensor: def forward(self, x: torch.Tensor) -> torch.Tensor:
# Attention + Q Pooling # Attention + Q Pooling
x_norm = self.norm1(x) x_norm = self.norm1(x)
@ -369,48 +369,10 @@ class HieraBlock(nn.Module):
], ],
dim=-1, dim=-1,
) )
x = x + self.drop_path1(self.attn(x_norm)) x = x + self.drop_path1(self.ls1(self.attn(x_norm)))
# MLP # MLP
x = x + self.drop_path2(self.mlp(self.norm2(x))) x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
return x
class NormClassifierHead(nn.Module):
def __init__(
self,
in_features: int,
num_classes: int,
pool_type: str = 'avg',
drop_rate: float = 0.0,
norm_layer: Union[str, Callable] = 'layernorm',
):
super().__init__()
norm_layer = get_norm_layer(norm_layer)
assert pool_type in ('avg', '')
self.in_features = self.num_features = in_features
self.pool_type = pool_type
self.norm = norm_layer(in_features)
self.drop = nn.Dropout(drop_rate) if drop_rate else nn.Identity()
self.fc = nn.Linear(in_features, num_classes) if num_classes > 0 else nn.Identity()
def reset(self, num_classes: int, pool_type: Optional[str] = None, other: bool = False):
if pool_type is not None:
assert pool_type in ('avg', '')
self.pool_type = pool_type
if other:
# reset other non-fc layers
self.norm = nn.Identity()
self.fc = nn.Linear(self.in_features, num_classes) if num_classes > 0 else nn.Identity()
def forward(self, x: torch.Tensor, pre_logits: bool = False) -> torch.Tensor:
if self.pool_type == 'avg':
x = x.mean(dim=1)
x = self.norm(x)
x = self.drop(x)
if pre_logits:
return x
x = self.fc(x)
return x return x
@ -470,6 +432,7 @@ class Hiera(nn.Module):
mask_unit_size: Tuple[int, ...] = (8, 8), # must divide q_stride ** (#stages-1) mask_unit_size: Tuple[int, ...] = (8, 8), # must divide q_stride ** (#stages-1)
# mask_unit_attn: which stages use mask unit attention? # mask_unit_attn: which stages use mask unit attention?
mask_unit_attn: Tuple[bool, ...] = (True, True, False, False), mask_unit_attn: Tuple[bool, ...] = (True, True, False, False),
use_expand_proj: bool = True,
dim_mul: float = 2.0, dim_mul: float = 2.0,
head_mul: float = 2.0, head_mul: float = 2.0,
patch_kernel: Tuple[int, ...] = (7, 7), patch_kernel: Tuple[int, ...] = (7, 7),
@ -477,13 +440,16 @@ class Hiera(nn.Module):
patch_padding: Tuple[int, ...] = (3, 3), patch_padding: Tuple[int, ...] = (3, 3),
mlp_ratio: float = 4.0, mlp_ratio: float = 4.0,
drop_path_rate: float = 0.0, drop_path_rate: float = 0.0,
init_values: Optional[float] = None,
fix_init: bool = True,
weight_init: str = '',
norm_layer: Union[str, nn.Module] = "LayerNorm", norm_layer: Union[str, nn.Module] = "LayerNorm",
drop_rate: float = 0.0, drop_rate: float = 0.0,
patch_drop_rate: float = 0.0, patch_drop_rate: float = 0.0,
head_init_scale: float = 0.001, head_init_scale: float = 0.001,
sep_pos_embed: bool = False, sep_pos_embed: bool = False,
abs_win_pos_embed: bool = False, abs_win_pos_embed: bool = False,
abs_pos_size: Tuple[int, int] = (14, 14), global_pos_size: Tuple[int, int] = (14, 14),
): ):
super().__init__() super().__init__()
self.num_classes = num_classes self.num_classes = num_classes
@ -510,11 +476,9 @@ class Hiera(nn.Module):
patch_kernel, patch_kernel,
patch_stride, patch_stride,
patch_padding, patch_padding,
#reshape=False, # leave spatial / temporal dims in output
) )
self.pos_embed: Optional[nn.Parameter] = None self.pos_embed: Optional[nn.Parameter] = None
self.pos_embed_abs: Optional[nn.Parameter] = None
self.pos_embed_win: Optional[nn.Parameter] = None self.pos_embed_win: Optional[nn.Parameter] = None
self.pos_embed_spatial: Optional[nn.Parameter] = None self.pos_embed_spatial: Optional[nn.Parameter] = None
self.pos_embed_temporal: Optional[nn.Parameter] = None self.pos_embed_temporal: Optional[nn.Parameter] = None
@ -528,7 +492,7 @@ class Hiera(nn.Module):
else: else:
if abs_win_pos_embed: if abs_win_pos_embed:
# absolute win, params NCHW to make tile & interpolate more natural before add & reshape # absolute win, params NCHW to make tile & interpolate more natural before add & reshape
self.pos_embed_abs = nn.Parameter(torch.zeros(1, embed_dim, *abs_pos_size)) self.pos_embed = nn.Parameter(torch.zeros(1, embed_dim, *global_pos_size))
self.pos_embed_win = nn.Parameter(torch.zeros(1, embed_dim, *mask_unit_size)) self.pos_embed_win = nn.Parameter(torch.zeros(1, embed_dim, *mask_unit_size))
else: else:
self.pos_embed = nn.Parameter(torch.zeros(1, num_tokens, embed_dim)) self.pos_embed = nn.Parameter(torch.zeros(1, num_tokens, embed_dim))
@ -552,7 +516,7 @@ class Hiera(nn.Module):
# Transformer blocks # Transformer blocks
cur_stage = 0 cur_stage = 0
depth = sum(stages) depth = sum(stages)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.blocks = nn.ModuleList() self.blocks = nn.ModuleList()
self.feature_info = [] self.feature_info = []
for i in range(depth): for i in range(depth):
@ -575,9 +539,11 @@ class Hiera(nn.Module):
heads=num_heads, heads=num_heads,
mlp_ratio=mlp_ratio, mlp_ratio=mlp_ratio,
drop_path=dpr[i], drop_path=dpr[i],
init_values=init_values,
norm_layer=norm_layer, norm_layer=norm_layer,
q_stride=(flat_q_stride if i in q_pool_blocks else 1), q_stride=(flat_q_stride if i in q_pool_blocks else 1),
window_size=flat_mu_size, window_size=flat_mu_size,
use_expand_proj=use_expand_proj,
use_mask_unit_attn=use_mask_unit_attn, use_mask_unit_attn=use_mask_unit_attn,
) )
embed_dim = dim_out embed_dim = dim_out
@ -587,12 +553,13 @@ class Hiera(nn.Module):
self.blocks.append(block) self.blocks.append(block)
self.num_features = self.head_hidden_size = embed_dim self.num_features = self.head_hidden_size = embed_dim
self.head = NormClassifierHead( self.head = ClNormMlpClassifierHead(
embed_dim, embed_dim,
num_classes, num_classes,
pool_type=global_pool, pool_type=global_pool,
drop_rate=drop_rate, drop_rate=drop_rate,
norm_layer=norm_layer, norm_layer=norm_layer,
input_fmt='NLC',
) )
# Initialize everything # Initialize everything
@ -602,22 +569,26 @@ class Hiera(nn.Module):
else: else:
if self.pos_embed is not None: if self.pos_embed is not None:
nn.init.trunc_normal_(self.pos_embed, std=0.02) nn.init.trunc_normal_(self.pos_embed, std=0.02)
elif self.pos_embed_abs is not None: if self.pos_embed_win is not None:
nn.init.trunc_normal_(self.pos_embed_abs, std=0.02)
nn.init.trunc_normal_(self.pos_embed_win, std=0.02) nn.init.trunc_normal_(self.pos_embed_win, std=0.02)
self.apply(partial(self._init_weights))
if weight_init != 'skip':
init_fn = init_weight_jax if weight_init == 'jax' else init_weight_vit
init_fn = partial(init_fn, classifier_name='head.fc')
named_apply(init_fn, self)
if fix_init:
self.fix_init_weight()
if isinstance(self.head.fc, nn.Linear): if isinstance(self.head.fc, nn.Linear):
self.head.fc.weight.data.mul_(head_init_scale) self.head.fc.weight.data.mul_(head_init_scale)
self.head.fc.bias.data.mul_(head_init_scale) self.head.fc.bias.data.mul_(head_init_scale)
def _init_weights(self, m, init_bias=0.02): def fix_init_weight(self):
if isinstance(m, (nn.Linear, nn.Conv1d, nn.Conv2d, nn.Conv3d)): def rescale(param, _layer_id):
nn.init.trunc_normal_(m.weight, std=0.02) param.div_(math.sqrt(2.0 * _layer_id))
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, init_bias) for layer_id, layer in enumerate(self.blocks):
elif isinstance(m, nn.LayerNorm): rescale(layer.attn.proj.weight.data, layer_id + 1)
nn.init.constant_(m.bias, init_bias) rescale(layer.mlp.fc2.weight.data, layer_id + 1)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore @torch.jit.ignore
def no_weight_decay(self): def no_weight_decay(self):
@ -643,9 +614,9 @@ class Hiera(nn.Module):
def get_classifier(self): def get_classifier(self):
return self.head.fc return self.head.fc
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None, other: bool = False): def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None, reset_other: bool = False):
self.num_classes = num_classes self.num_classes = num_classes
self.head.reset(num_classes, global_pool, other=other) self.head.reset(num_classes, global_pool, reset_other=reset_other)
def get_random_mask(self, x: torch.Tensor, mask_ratio: float) -> torch.Tensor: def get_random_mask(self, x: torch.Tensor, mask_ratio: float) -> torch.Tensor:
""" """
@ -672,20 +643,20 @@ class Hiera(nn.Module):
return mask.bool() return mask.bool()
def _pos_embed(self, x) -> torch.Tensor: def _pos_embed(self, x) -> torch.Tensor:
if self.pos_embed is not None: if self.pos_embed_win is not None:
pos_embed = self.pos_embed
elif self.pos_embed_abs is not None:
# absolute win position embedding, from # absolute win position embedding, from
# Window Attention is Bugged: How not to Interpolate Position Embeddings (https://arxiv.org/abs/2311.05613) # Window Attention is Bugged: How not to Interpolate Position Embeddings (https://arxiv.org/abs/2311.05613)
pos_embed_win = self.pos_embed_win.tile(self.mask_spatial_shape) pos_embed_win = self.pos_embed_win.tile(self.mask_spatial_shape)
pos_embed_abs = F.interpolate( pos_embed = F.interpolate(
self.pos_embed_abs, self.pos_embed,
size=pos_embed_win.shape[-2:], size=pos_embed_win.shape[-2:],
mode='bicubic', mode='bicubic',
antialias=True, antialias=True,
) )
pos_embed = pos_embed_abs + pos_embed_win pos_embed = pos_embed + pos_embed_win
pos_embed = pos_embed.flatten(2).transpose(1, 2) pos_embed = pos_embed.flatten(2).transpose(1, 2)
elif self.pos_embed is not None:
pos_embed = self.pos_embed
else: else:
pos_embed = ( pos_embed = (
self.pos_embed_spatial.repeat(1, self.tokens_spatial_shape[0], 1) self.pos_embed_spatial.repeat(1, self.tokens_spatial_shape[0], 1)
@ -708,6 +679,7 @@ class Hiera(nn.Module):
stop_early: bool = True, stop_early: bool = True,
output_fmt: str = 'NCHW', output_fmt: str = 'NCHW',
intermediates_only: bool = False, intermediates_only: bool = False,
coarse: bool = True,
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
""" Forward features that returns intermediates. """ Forward features that returns intermediates.
@ -722,10 +694,13 @@ class Hiera(nn.Module):
""" """
assert not norm, 'normalization of features not supported' assert not norm, 'normalization of features not supported'
assert output_fmt in ('NCHW',), 'Output format must be one of NCHW.' assert output_fmt in ('NCHW', 'NHWC'), 'Output format must be one of NCHW, NHWC.'
take_indices, max_index = feature_take_indices(len(self.stage_ends), indices) if coarse:
take_indices = [self.stage_ends[i] for i in take_indices] take_indices, max_index = feature_take_indices(len(self.stage_ends), indices)
max_index = self.stage_ends[max_index] take_indices = [self.stage_ends[i] for i in take_indices]
max_index = self.stage_ends[max_index]
else:
take_indices, max_index = feature_take_indices(len(self.blocks), indices)
if mask is not None: if mask is not None:
patch_mask = mask.view(x.shape[0], 1, *self.mask_spatial_shape) # B, C, *mask_spatial_shape patch_mask = mask.view(x.shape[0], 1, *self.mask_spatial_shape) # B, C, *mask_spatial_shape
@ -747,7 +722,8 @@ class Hiera(nn.Module):
for i, blk in enumerate(blocks): for i, blk in enumerate(blocks):
x = blk(x) x = blk(x)
if i in take_indices: if i in take_indices:
intermediates.append(self.reroll(x, i, mask=mask).permute(0, 3, 1, 2)) x_int = self.reroll(x, i, mask=mask)
intermediates.append(x_int.permute(0, 3, 1, 2) if output_fmt == 'NCHW' else x_int)
if intermediates_only: if intermediates_only:
return intermediates return intermediates
@ -759,14 +735,18 @@ class Hiera(nn.Module):
indices: Union[int, List[int]] = 1, indices: Union[int, List[int]] = 1,
prune_norm: bool = False, prune_norm: bool = False,
prune_head: bool = True, prune_head: bool = True,
coarse: bool = True,
): ):
""" Prune layers not required for specified intermediates. """ Prune layers not required for specified intermediates.
""" """
take_indices, max_index = feature_take_indices(len(self.stage_ends), indices) if coarse:
max_index = self.stage_ends[max_index] take_indices, max_index = feature_take_indices(len(self.stage_ends), indices)
max_index = self.stage_ends[max_index]
else:
take_indices, max_index = feature_take_indices(len(self.blocks), indices)
self.blocks = self.blocks[:max_index + 1] # truncate blocks self.blocks = self.blocks[:max_index + 1] # truncate blocks
if prune_head: if prune_head:
self.head.reset(0, other=True) self.head.reset(0, reset_other=True)
return take_indices return take_indices
def forward_features( def forward_features(
@ -901,8 +881,22 @@ default_cfgs = generate_default_cfgs({
num_classes=0, num_classes=0,
), ),
"hiera_small_abswin_256.untrained": _cfg( "hiera_small_abswin_256.sbb2_e200_in12k_ft_in1k": _cfg(
#hf_hub_id='timm/', hf_hub_id='timm/',
input_size=(3, 256, 256), crop_pct=0.95,
),
"hiera_small_abswin_256.sbb2_pd_e200_in12k_ft_in1k": _cfg(
hf_hub_id='timm/',
input_size=(3, 256, 256), crop_pct=0.95,
),
"hiera_small_abswin_256.sbb2_e200_in12k": _cfg(
hf_hub_id='timm/',
num_classes=11821,
input_size=(3, 256, 256), crop_pct=0.95,
),
"hiera_small_abswin_256.sbb2_pd_e200_in12k": _cfg(
hf_hub_id='timm/',
num_classes=11821,
input_size=(3, 256, 256), crop_pct=0.95, input_size=(3, 256, 256), crop_pct=0.95,
), ),
"hiera_base_abswin_256.untrained": _cfg( "hiera_base_abswin_256.untrained": _cfg(
@ -931,6 +925,8 @@ def checkpoint_filter_fn(state_dict, model=None):
k = k.replace('encoder_norm.', 'head.norm.') k = k.replace('encoder_norm.', 'head.norm.')
elif k.startswith('norm.'): elif k.startswith('norm.'):
k = k.replace('norm.', 'head.norm.') k = k.replace('norm.', 'head.norm.')
if k == 'pos_embed_abs':
k = 'pos_embed'
output[k] = v output[k] = v
return output return output
@ -947,6 +943,7 @@ def _create_hiera(variant: str, pretrained: bool = False, **kwargs) -> Hiera:
**kwargs, **kwargs,
) )
@register_model @register_model
def hiera_tiny_224(pretrained=False, **kwargs): def hiera_tiny_224(pretrained=False, **kwargs):
model_args = dict(embed_dim=96, num_heads=1, stages=(1, 2, 7, 2)) model_args = dict(embed_dim=96, num_heads=1, stages=(1, 2, 7, 2))
@ -985,11 +982,15 @@ def hiera_huge_224(pretrained=False, **kwargs):
@register_model @register_model
def hiera_small_abswin_256(pretrained=False, **kwargs): def hiera_small_abswin_256(pretrained=False, **kwargs):
model_args = dict(embed_dim=96, num_heads=1, stages=(1, 2, 11, 2), abs_win_pos_embed=True, abs_pos_size=(16, 16)) model_args = dict(
embed_dim=96, num_heads=1, stages=(1, 2, 11, 2), abs_win_pos_embed=True, global_pos_size=(16, 16),
init_values=1e-5, weight_init='jax', use_expand_proj=False,
)
return _create_hiera('hiera_small_abswin_256', pretrained=pretrained, **dict(model_args, **kwargs)) return _create_hiera('hiera_small_abswin_256', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model @register_model
def hiera_base_abswin_256(pretrained=False, **kwargs): def hiera_base_abswin_256(pretrained=False, **kwargs):
model_args = dict(embed_dim=96, num_heads=1, stages=(2, 3, 16, 3), abs_win_pos_embed=True, abs_pos_size=(16, 16)) model_args = dict(
return _create_hiera('hiera_base_abswin_256', pretrained=pretrained, **dict(model_args, **kwargs)) embed_dim=96, num_heads=1, stages=(2, 3, 16, 3), abs_win_pos_embed=True, init_values=1e-5, weight_init='jax')
return _create_hiera('hiera_base_abswin_256', pretrained=pretrained, **dict(model_args, **kwargs))

View File

@ -0,0 +1,635 @@
import math
from copy import deepcopy
from functools import partial
from typing import Callable, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.jit import Final
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import PatchEmbed, Mlp, DropPath, ClNormMlpClassifierHead, LayerScale, \
get_norm_layer, get_act_layer, init_weight_jax, init_weight_vit, to_2tuple, use_fused_attn
from ._builder import build_model_with_cfg
from ._features import feature_take_indices
from ._manipulate import named_apply, checkpoint_seq, adapt_input_conv
from ._registry import generate_default_cfgs, register_model, register_model_deprecations
def window_partition(x, window_size: Tuple[int, int]):
"""
Partition into non-overlapping windows with padding if needed.
Args:
x (tensor): input tokens with [B, H, W, C].
window_size (int): window size.
Returns:
windows: windows after partition with [B * num_windows, window_size, window_size, C].
(Hp, Wp): padded height and width before partition
"""
B, H, W, C = x.shape
x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C)
return windows
def window_unpartition(windows: torch.Tensor, window_size: Tuple[int, int], hw: Tuple[int, int]):
"""
Window unpartition into original sequences and removing padding.
Args:
x (tensor): input tokens with [B * num_windows, window_size, window_size, C].
window_size (int): window size.
hw (Tuple): original height and width (H, W) before padding.
Returns:
x: unpartitioned sequences with [B, H, W, C].
"""
H, W = hw
B = windows.shape[0] // (H * W // window_size[0] // window_size[1])
x = windows.view(B, H // window_size[0], W // window_size[1], window_size[0], window_size[1], -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
return x
def _calc_pad(H: int, W: int, window_size: Tuple[int, int]) -> Tuple[int, int, int, int]:
pad_h = (window_size[0] - H % window_size[0]) % window_size[0]
pad_w = (window_size[1] - W % window_size[1]) % window_size[1]
Hp, Wp = H + pad_h, W + pad_w
return Hp, Wp, pad_h, pad_w
class MultiScaleAttention(nn.Module):
fused_attn: torch.jit.Final[bool]
def __init__(
self,
dim: int,
dim_out: int,
num_heads: int,
q_pool: nn.Module = None,
):
super().__init__()
self.dim = dim
self.dim_out = dim_out
self.num_heads = num_heads
head_dim = dim_out // num_heads
self.scale = head_dim ** -0.5
self.fused_attn = use_fused_attn()
self.q_pool = q_pool
self.qkv = nn.Linear(dim, dim_out * 3)
self.proj = nn.Linear(dim_out, dim_out)
def forward(self, x: torch.Tensor) -> torch.Tensor:
B, H, W, _ = x.shape
# qkv with shape (B, H * W, 3, nHead, C)
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1)
# q, k, v with shape (B, H * W, nheads, C)
q, k, v = torch.unbind(qkv, 2)
# Q pooling (for downsample at stage changes)
if self.q_pool is not None:
q = q.reshape(B, H, W, -1).permute(0, 3, 1, 2) # to BCHW for pool
q = self.q_pool(q).permute(0, 2, 3, 1)
H, W = q.shape[1:3] # downsampled shape
q = q.reshape(B, H * W, self.num_heads, -1)
# Torch's SDPA expects [B, nheads, H*W, C] so we transpose
q = q.transpose(1, 2)
k = k.transpose(1, 2)
v = v.transpose(1, 2)
if self.fused_attn:
x = F.scaled_dot_product_attention(q, k, v)
else:
q = q * self.scale
attn = q @ k.transpose(-1, -2)
attn = attn.softmax(dim=-1)
x = attn @ v
# Transpose back
x = x.transpose(1, 2).reshape(B, H, W, -1)
x = self.proj(x)
return x
class MultiScaleBlock(nn.Module):
def __init__(
self,
dim: int,
dim_out: int,
num_heads: int,
mlp_ratio: float = 4.0,
q_stride: Optional[Tuple[int, int]] = None,
norm_layer: Union[nn.Module, str] = "LayerNorm",
act_layer: Union[nn.Module, str] = "GELU",
window_size: int = 0,
init_values: Optional[float] = None,
drop_path: float = 0.0,
):
super().__init__()
norm_layer = get_norm_layer(norm_layer)
act_layer = get_act_layer(act_layer)
self.window_size = to_2tuple(window_size)
self.is_windowed = any(self.window_size)
self.dim = dim
self.dim_out = dim_out
self.q_stride = q_stride
if dim != dim_out:
self.proj = nn.Linear(dim, dim_out)
else:
self.proj = nn.Identity()
self.pool = None
if self.q_stride:
# note make a different instance for this Module so that it's not shared with attn module
self.pool = nn.MaxPool2d(
kernel_size=q_stride,
stride=q_stride,
ceil_mode=False,
)
self.norm1 = norm_layer(dim)
self.attn = MultiScaleAttention(
dim,
dim_out,
num_heads=num_heads,
q_pool=deepcopy(self.pool),
)
self.ls1 = LayerScale(dim_out, init_values) if init_values is not None else nn.Identity()
self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2 = norm_layer(dim_out)
self.mlp = Mlp(
dim_out,
int(dim_out * mlp_ratio),
act_layer=act_layer,
)
self.ls2 = LayerScale(dim_out, init_values) if init_values is not None else nn.Identity()
self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
def forward(self, x: torch.Tensor) -> torch.Tensor:
shortcut = x # B, H, W, C
x = self.norm1(x)
# Skip connection
if self.dim != self.dim_out:
shortcut = self.proj(x)
if self.pool is not None:
shortcut = shortcut.permute(0, 3, 1, 2)
shortcut = self.pool(shortcut).permute(0, 2, 3, 1)
# Window partition
window_size = self.window_size
H, W = x.shape[1:3]
Hp, Wp = H, W # keep torchscript happy
if self.is_windowed:
Hp, Wp, pad_h, pad_w = _calc_pad(H, W, window_size)
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
x = window_partition(x, window_size)
# Window Attention + Q Pooling (if stage change)
x = self.attn(x)
if self.q_stride is not None:
# Shapes have changed due to Q pooling
window_size = (self.window_size[0] // self.q_stride[0], self.window_size[1] // self.q_stride[1])
H, W = shortcut.shape[1:3]
Hp, Wp, pad_h, pad_w = _calc_pad(H, W, window_size)
# Reverse window partition
if self.is_windowed:
x = window_unpartition(x, window_size, (Hp, Wp))
x = x[:, :H, :W, :].contiguous() # unpad
x = shortcut + self.drop_path1(self.ls1(x))
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
return x
class HieraPatchEmbed(nn.Module):
"""
Image to Patch Embedding.
"""
def __init__(
self,
kernel_size: Tuple[int, ...] = (7, 7),
stride: Tuple[int, ...] = (4, 4),
padding: Tuple[int, ...] = (3, 3),
in_chans: int = 3,
embed_dim: int = 768,
):
"""
Args:
kernel_size (Tuple): kernel size of the projection layer.
stride (Tuple): stride of the projection layer.
padding (Tuple): padding size of the projection layer.
in_chans (int): Number of input image channels.
embed_dim (int): embed_dim (int): Patch embedding dimension.
"""
super().__init__()
self.proj = nn.Conv2d(
in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.proj(x)
# B C H W -> B H W C
x = x.permute(0, 2, 3, 1)
return x
class HieraDet(nn.Module):
"""
Reference: https://arxiv.org/abs/2306.00989
"""
def __init__(
self,
in_chans: int = 3,
num_classes: int = 1000,
global_pool: str = 'avg',
embed_dim: int = 96, # initial embed dim
num_heads: int = 1, # initial number of heads
patch_kernel: Tuple[int, ...] = (7, 7),
patch_stride: Tuple[int, ...] = (4, 4),
patch_padding: Tuple[int, ...] = (3, 3),
patch_size: Optional[Tuple[int, ...]] = None,
q_pool: int = 3, # number of q_pool stages
q_stride: Tuple[int, int] = (2, 2), # downsample stride bet. stages
stages: Tuple[int, ...] = (2, 3, 16, 3), # blocks per stage
dim_mul: float = 2.0, # dim_mul factor at stage shift
head_mul: float = 2.0, # head_mul factor at stage shift
global_pos_size: Tuple[int, int] = (7, 7),
# window size per stage, when not using global att.
window_spec: Tuple[int, ...] = (
8,
4,
14,
7,
),
# global attn in these blocks
global_att_blocks: Tuple[int, ...] = (
12,
16,
20,
),
init_values: Optional[float] = None,
weight_init: str = '',
fix_init: bool = True,
head_init_scale: float = 0.001,
drop_rate: float = 0.0,
drop_path_rate: float = 0.0, # stochastic depth
norm_layer: Union[nn.Module, str] = "LayerNorm",
act_layer: Union[nn.Module, str] = "GELU",
):
super().__init__()
norm_layer = get_norm_layer(norm_layer)
act_layer = get_act_layer(act_layer)
assert len(stages) == len(window_spec)
self.num_classes = num_classes
self.window_spec = window_spec
self.output_fmt = 'NHWC'
depth = sum(stages)
self.q_stride = q_stride
self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)]
assert 0 <= q_pool <= len(self.stage_ends[:-1])
self.q_pool_blocks = [x + 1 for x in self.stage_ends[:-1]][:q_pool]
if patch_size is not None:
# use a non-overlapping vit style patch embed
self.patch_embed = PatchEmbed(
img_size=None,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
output_fmt='NHWC',
dynamic_img_pad=True,
)
else:
self.patch_embed = HieraPatchEmbed(
kernel_size=patch_kernel,
stride=patch_stride,
padding=patch_padding,
in_chans=in_chans,
embed_dim=embed_dim,
)
# Which blocks have global att?
self.global_att_blocks = global_att_blocks
# Windowed positional embedding (https://arxiv.org/abs/2311.05613)
self.global_pos_size = global_pos_size
self.pos_embed = nn.Parameter(torch.zeros(1, embed_dim, *self.global_pos_size))
self.pos_embed_window = nn.Parameter(torch.zeros(1, embed_dim, self.window_spec[0], self.window_spec[0]))
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
cur_stage = 0
self.blocks = nn.Sequential()
self.feature_info = []
for i in range(depth):
dim_out = embed_dim
# lags by a block, so first block of
# next stage uses an initial window size
# of previous stage and final window size of current stage
window_size = self.window_spec[cur_stage]
if self.global_att_blocks is not None:
window_size = 0 if i in self.global_att_blocks else window_size
if i - 1 in self.stage_ends:
dim_out = int(embed_dim * dim_mul)
num_heads = int(num_heads * head_mul)
cur_stage += 1
block = MultiScaleBlock(
dim=embed_dim,
dim_out=dim_out,
num_heads=num_heads,
drop_path=dpr[i],
q_stride=self.q_stride if i in self.q_pool_blocks else None,
window_size=window_size,
norm_layer=norm_layer,
act_layer=act_layer,
)
embed_dim = dim_out
self.blocks.append(block)
if i in self.stage_ends:
self.feature_info += [
dict(num_chs=dim_out, reduction=2**(cur_stage+2), module=f'blocks.{self.stage_ends[cur_stage]}')]
self.num_features = self.head_hidden_size = embed_dim
self.head = ClNormMlpClassifierHead(
embed_dim,
num_classes,
pool_type=global_pool,
drop_rate=drop_rate,
norm_layer=norm_layer,
)
# Initialize everything
if self.pos_embed is not None:
nn.init.trunc_normal_(self.pos_embed, std=0.02)
if self.pos_embed_window is not None:
nn.init.trunc_normal_(self.pos_embed_window, std=0.02)
if weight_init != 'skip':
init_fn = init_weight_jax if weight_init == 'jax' else init_weight_vit
init_fn = partial(init_fn, classifier_name='head.fc')
named_apply(init_fn, self)
if fix_init:
self.fix_init_weight()
if isinstance(self.head, ClNormMlpClassifierHead) and isinstance(self.head.fc, nn.Linear):
self.head.fc.weight.data.mul_(head_init_scale)
self.head.fc.bias.data.mul_(head_init_scale)
def _pos_embed(self, x: torch.Tensor) -> torch.Tensor:
h, w = x.shape[1:3]
window_embed = self.pos_embed_window
pos_embed = F.interpolate(self.pos_embed, size=(h, w), mode="bicubic")
tile_h = pos_embed.shape[-2] // window_embed.shape[-2]
tile_w = pos_embed.shape[-1] // window_embed.shape[-1]
pos_embed = pos_embed + window_embed.tile((tile_h, tile_w))
pos_embed = pos_embed.permute(0, 2, 3, 1)
return x + pos_embed
def fix_init_weight(self):
def rescale(param, _layer_id):
param.div_(math.sqrt(2.0 * _layer_id))
for layer_id, layer in enumerate(self.blocks):
rescale(layer.attn.proj.weight.data, layer_id + 1)
rescale(layer.mlp.fc2.weight.data, layer_id + 1)
@torch.jit.ignore
def no_weight_decay(self):
return ['pos_embed', 'pos_embed_window']
@torch.jit.ignore
def group_matcher(self, coarse: bool = False) -> Dict:
return dict(
stem=r'^pos_embed|pos_embed_window|patch_embed',
blocks=[(r'^blocks\.(\d+)', None)]
)
@torch.jit.ignore
def set_grad_checkpointing(self, enable: bool = True) -> None:
self.grad_checkpointing = enable
@torch.jit.ignore
def get_classifier(self):
return self.head.fc
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None, reset_other: bool = False):
self.num_classes = num_classes
self.head.reset(num_classes, pool_type=global_pool, reset_other=reset_other)
def forward_intermediates(
self,
x: torch.Tensor,
indices: Optional[Union[int, List[int]]] = None,
norm: bool = False,
stop_early: bool = True,
output_fmt: str = 'NCHW',
intermediates_only: bool = False,
coarse: bool = True,
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
""" Forward features that returns intermediates.
Args:
x: Input image tensor
indices: Take last n blocks if int, all if None, select matching indices if sequence
norm: Apply norm layer to all intermediates
stop_early: Stop iterating over blocks when last desired intermediate hit
output_fmt: Shape of intermediate feature outputs
intermediates_only: Only return intermediate features
coarse: Take coarse features (stage ends) if true, otherwise all block featrures
Returns:
"""
assert not norm, 'normalization of features not supported'
assert output_fmt in ('NCHW', 'NHWC'), 'Output format must be one of NCHW, NHWC.'
if coarse:
take_indices, max_index = feature_take_indices(len(self.stage_ends), indices)
take_indices = [self.stage_ends[i] for i in take_indices]
max_index = self.stage_ends[max_index]
else:
take_indices, max_index = feature_take_indices(len(self.blocks), indices)
x = self.patch_embed(x)
x = self._pos_embed(x)
intermediates = []
if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript
blocks = self.blocks
else:
blocks = self.blocks[:max_index + 1]
for i, blk in enumerate(blocks):
x = blk(x)
if i in take_indices:
x_out = x.permute(0, 3, 1, 2) if output_fmt == 'NCHW' else x
intermediates.append(x_out)
if intermediates_only:
return intermediates
return x, intermediates
def prune_intermediate_layers(
self,
indices: Union[int, List[int]] = 1,
prune_norm: bool = False,
prune_head: bool = True,
coarse: bool = True,
):
""" Prune layers not required for specified intermediates.
"""
if coarse:
take_indices, max_index = feature_take_indices(len(self.stage_ends), indices)
max_index = self.stage_ends[max_index]
else:
take_indices, max_index = feature_take_indices(len(self.blocks), indices)
self.blocks = self.blocks[:max_index + 1] # truncate blocks
if prune_head:
self.head.reset(0, reset_other=prune_norm)
return take_indices
def forward_features(self, x: torch.Tensor) -> torch.Tensor:
x = self.patch_embed(x) # BHWC
x = self._pos_embed(x)
for i, blk in enumerate(self.blocks):
x = blk(x)
return x
def forward_head(self, x, pre_logits: bool = False) -> torch.Tensor:
x = self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x)
return x
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.forward_features(x)
x = self.forward_head(x)
return x
# NOTE sam2 appears to use 1024x1024 for all models, but T, S, & B+ have windows that fit multiples of 224.
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 0, 'input_size': (3, 896, 896), 'pool_size': (28, 28),
'crop_pct': 1.0, 'interpolation': 'bicubic', 'min_input_size': (3, 224, 224),
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'patch_embed.proj', 'classifier': 'head.fc',
**kwargs
}
default_cfgs = generate_default_cfgs({
"sam2_hiera_tiny.r224": _cfg(
hf_hub_id='facebook/sam2-hiera-tiny',
hf_hub_filename='sam2_hiera_tiny.pt',
input_size=(3, 224, 224), pool_size=(7, 7),
), # FIXME reduced res for testing
"sam2_hiera_tiny.r896": _cfg(
hf_hub_id='facebook/sam2-hiera-tiny',
hf_hub_filename='sam2_hiera_tiny.pt',
),
"sam2_hiera_small": _cfg(
hf_hub_id='facebook/sam2-hiera-small',
hf_hub_filename='sam2_hiera_small.pt',
),
"sam2_hiera_base_plus": _cfg(
hf_hub_id='facebook/sam2-hiera-base-plus',
hf_hub_filename='sam2_hiera_base_plus.pt',
),
"sam2_hiera_large": _cfg(
hf_hub_id='facebook/sam2-hiera-large',
hf_hub_filename='sam2_hiera_large.pt',
min_input_size=(3, 256, 256),
input_size=(3, 1024, 1024), pool_size=(32, 32),
),
"hieradet_small.untrained": _cfg(
num_classes=1000,
input_size=(3, 256, 256), pool_size=(8, 8),
),
})
def checkpoint_filter_fn(state_dict, model=None, prefix=''):
state_dict = state_dict.get('model', state_dict)
output = {}
for k, v in state_dict.items():
if k.startswith(prefix):
k = k.replace(prefix, '')
else:
continue
k = k.replace('mlp.layers.0', 'mlp.fc1')
k = k.replace('mlp.layers.1', 'mlp.fc2')
output[k] = v
return output
def _create_hiera_det(variant: str, pretrained: bool = False, **kwargs) -> HieraDet:
out_indices = kwargs.pop('out_indices', 4)
checkpoint_prefix = ''
if 'sam2' in variant:
# SAM2 pretrained weights have no classifier or final norm-layer (`head.norm`)
# This is workaround loading with num_classes=0 w/o removing norm-layer.
kwargs.setdefault('pretrained_strict', False)
checkpoint_prefix = 'image_encoder.trunk.'
return build_model_with_cfg(
HieraDet,
variant,
pretrained,
pretrained_filter_fn=partial(checkpoint_filter_fn, prefix=checkpoint_prefix),
feature_cfg=dict(out_indices=out_indices, feature_cls='getter'),
**kwargs,
)
@register_model
def sam2_hiera_tiny(pretrained=False, **kwargs):
model_args = dict(stages=(1, 2, 7, 2), global_att_blocks=(5, 7, 9))
return _create_hiera_det('sam2_hiera_tiny', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def sam2_hiera_small(pretrained=False, **kwargs):
model_args = dict(stages=(1, 2, 11, 2), global_att_blocks=(7, 10, 13))
return _create_hiera_det('sam2_hiera_small', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def sam2_hiera_base_plus(pretrained=False, **kwargs):
model_args = dict(embed_dim=112, num_heads=2, global_pos_size=(14, 14))
return _create_hiera_det('sam2_hiera_base_plus', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def sam2_hiera_large(pretrained=False, **kwargs):
model_args = dict(
embed_dim=144,
num_heads=2,
stages=(2, 6, 36, 4),
global_att_blocks=(23, 33, 43),
window_spec=(8, 4, 16, 8),
)
return _create_hiera_det('sam2_hiera_large', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def hieradet_small(pretrained=False, **kwargs):
model_args = dict(stages=(1, 2, 11, 2), global_att_blocks=(7, 10, 13), window_spec=(8, 4, 16, 8), init_values=1e-5)
return _create_hiera_det('hieradet_small', pretrained=pretrained, **dict(model_args, **kwargs))
# @register_model
# def hieradet_base(pretrained=False, **kwargs):
# model_args = dict(window_spec=(8, 4, 16, 8))
# return _create_hiera_det('hieradet_base', pretrained=pretrained, **dict(model_args, **kwargs))

View File

@ -783,6 +783,11 @@ default_cfgs = generate_default_cfgs({
hf_hub_id='timm/', hf_hub_id='timm/',
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet50d_ra2-464e36ba.pth', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet50d_ra2-464e36ba.pth',
first_conv='conv1.0'), first_conv='conv1.0'),
'resnet50d.ra4_e3600_r224_in1k': _rcfg(
hf_hub_id='timm/',
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0,
first_conv='conv1.0'),
'resnet50d.a1_in1k': _rcfg( 'resnet50d.a1_in1k': _rcfg(
hf_hub_id='timm/', hf_hub_id='timm/',
url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50d_a1_0-e20cff14.pth', url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50d_a1_0-e20cff14.pth',

View File

@ -1964,26 +1964,46 @@ default_cfgs = {
hf_hub_id='timm/', hf_hub_id='timm/',
num_classes=11821, num_classes=11821,
input_size=(3, 256, 256), crop_pct=0.95), input_size=(3, 256, 256), crop_pct=0.95),
'vit_mediumd_patch16_reg4_gap_256.sbb2_e200_in12k_ft_in1k': _cfg(
hf_hub_id='timm/',
input_size=(3, 256, 256), crop_pct=0.95),
'vit_mediumd_patch16_reg4_gap_256.sbb_in12k_ft_in1k': _cfg( 'vit_mediumd_patch16_reg4_gap_256.sbb_in12k_ft_in1k': _cfg(
hf_hub_id='timm/', hf_hub_id='timm/',
input_size=(3, 256, 256), crop_pct=0.95), input_size=(3, 256, 256), crop_pct=0.95),
'vit_mediumd_patch16_reg4_gap_256.sbb2_e200_in12k': _cfg(
hf_hub_id='timm/',
num_classes=11821,
input_size=(3, 256, 256), crop_pct=0.95),
'vit_mediumd_patch16_reg4_gap_256.sbb_in12k': _cfg( 'vit_mediumd_patch16_reg4_gap_256.sbb_in12k': _cfg(
hf_hub_id='timm/', hf_hub_id='timm/',
num_classes=11821, num_classes=11821,
input_size=(3, 256, 256), crop_pct=0.95), input_size=(3, 256, 256), crop_pct=0.95),
'vit_mediumd_patch16_reg4_gap_384.sbb2_e200_in12k_ft_in1k': _cfg(
hf_hub_id='timm/',
input_size=(3, 384, 384), crop_pct=1.0),
'vit_betwixt_patch16_reg1_gap_256.sbb_in1k': _cfg( 'vit_betwixt_patch16_reg1_gap_256.sbb_in1k': _cfg(
hf_hub_id='timm/', hf_hub_id='timm/',
input_size=(3, 256, 256), crop_pct=0.95), input_size=(3, 256, 256), crop_pct=0.95),
'vit_betwixt_patch16_reg4_gap_256.sbb2_e200_in12k_ft_in1k': _cfg(
hf_hub_id='timm/',
input_size=(3, 256, 256), crop_pct=0.95),
'vit_betwixt_patch16_reg4_gap_256.sbb_in12k_ft_in1k': _cfg( 'vit_betwixt_patch16_reg4_gap_256.sbb_in12k_ft_in1k': _cfg(
hf_hub_id='timm/', hf_hub_id='timm/',
input_size=(3, 256, 256), crop_pct=0.95), input_size=(3, 256, 256), crop_pct=0.95),
'vit_betwixt_patch16_reg4_gap_256.sbb_in1k': _cfg( 'vit_betwixt_patch16_reg4_gap_256.sbb_in1k': _cfg(
hf_hub_id='timm/', hf_hub_id='timm/',
input_size=(3, 256, 256), crop_pct=0.95), input_size=(3, 256, 256), crop_pct=0.95),
'vit_betwixt_patch16_reg4_gap_256.sbb2_e200_in12k': _cfg(
hf_hub_id='timm/',
num_classes=11821,
input_size=(3, 256, 256), crop_pct=0.95),
'vit_betwixt_patch16_reg4_gap_256.sbb_in12k': _cfg( 'vit_betwixt_patch16_reg4_gap_256.sbb_in12k': _cfg(
hf_hub_id='timm/', hf_hub_id='timm/',
num_classes=11821, num_classes=11821,
input_size=(3, 256, 256), crop_pct=0.95), input_size=(3, 256, 256), crop_pct=0.95),
'vit_betwixt_patch16_reg4_gap_384.sbb2_e200_in12k_ft_in1k': _cfg(
hf_hub_id='timm/',
input_size=(3, 384, 384), crop_pct=1.0),
'vit_base_patch16_reg4_gap_256.untrained': _cfg( 'vit_base_patch16_reg4_gap_256.untrained': _cfg(
input_size=(3, 256, 256)), input_size=(3, 256, 256)),
@ -3110,6 +3130,17 @@ def vit_mediumd_patch16_reg4_gap_256(pretrained: bool = False, **kwargs) -> Visi
return model return model
@register_model
def vit_mediumd_patch16_reg4_gap_384(pretrained: bool = False, **kwargs) -> VisionTransformer:
model_args = dict(
patch_size=16, embed_dim=512, depth=20, num_heads=8, init_values=1e-5,
class_token=False, no_embed_class=True, reg_tokens=4, global_pool='avg',
)
model = _create_vision_transformer(
'vit_mediumd_patch16_reg4_gap_384', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model @register_model
def vit_betwixt_patch16_reg1_gap_256(pretrained: bool = False, **kwargs) -> VisionTransformer: def vit_betwixt_patch16_reg1_gap_256(pretrained: bool = False, **kwargs) -> VisionTransformer:
model_args = dict( model_args = dict(
@ -3132,6 +3163,17 @@ def vit_betwixt_patch16_reg4_gap_256(pretrained: bool = False, **kwargs) -> Visi
return model return model
@register_model
def vit_betwixt_patch16_reg4_gap_384(pretrained: bool = False, **kwargs) -> VisionTransformer:
model_args = dict(
patch_size=16, embed_dim=640, depth=12, num_heads=10, init_values=1e-5,
class_token=False, no_embed_class=True, reg_tokens=4, global_pool='avg',
)
model = _create_vision_transformer(
'vit_betwixt_patch16_reg4_gap_384', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model @register_model
def vit_base_patch16_reg4_gap_256(pretrained: bool = False, **kwargs) -> VisionTransformer: def vit_base_patch16_reg4_gap_256(pretrained: bool = False, **kwargs) -> VisionTransformer:
model_args = dict( model_args = dict(