mirror of
https://github.com/huggingface/pytorch-image-models.git
synced 2025-06-03 15:01:08 +08:00
Combine ghostnetv2 with ghostnet, reduec redundancy, add weights to hf hub.
This commit is contained in:
parent
3f320a9e57
commit
126a58e563
@ -23,7 +23,6 @@ from .eva import *
|
||||
from .focalnet import *
|
||||
from .gcvit import *
|
||||
from .ghostnet import *
|
||||
from .ghostnetv2 import *
|
||||
from .hardcorenas import *
|
||||
from .hrnet import *
|
||||
from .inception_resnet_v2 import *
|
||||
|
@ -33,7 +33,8 @@ class GhostModule(nn.Module):
|
||||
ratio=2,
|
||||
dw_size=3,
|
||||
stride=1,
|
||||
relu=True,
|
||||
use_act=True,
|
||||
act_layer=nn.ReLU,
|
||||
):
|
||||
super(GhostModule, self).__init__()
|
||||
self.out_chs = out_chs
|
||||
@ -43,13 +44,13 @@ class GhostModule(nn.Module):
|
||||
self.primary_conv = nn.Sequential(
|
||||
nn.Conv2d(in_chs, init_chs, kernel_size, stride, kernel_size // 2, bias=False),
|
||||
nn.BatchNorm2d(init_chs),
|
||||
nn.ReLU(inplace=True) if relu else nn.Identity(),
|
||||
act_layer(inplace=True) if use_act else nn.Identity(),
|
||||
)
|
||||
|
||||
self.cheap_operation = nn.Sequential(
|
||||
nn.Conv2d(init_chs, new_chs, dw_size, 1, dw_size//2, groups=init_chs, bias=False),
|
||||
nn.BatchNorm2d(new_chs),
|
||||
nn.ReLU(inplace=True) if relu else nn.Identity(),
|
||||
act_layer(inplace=True) if use_act else nn.Identity(),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
@ -59,6 +60,51 @@ class GhostModule(nn.Module):
|
||||
return out[:, :self.out_chs, :, :]
|
||||
|
||||
|
||||
class GhostModuleV2(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_chs,
|
||||
out_chs,
|
||||
kernel_size=1,
|
||||
ratio=2,
|
||||
dw_size=3,
|
||||
stride=1,
|
||||
use_act=True,
|
||||
act_layer=nn.ReLU,
|
||||
):
|
||||
super().__init__()
|
||||
self.gate_fn = nn.Sigmoid()
|
||||
self.out_chs = out_chs
|
||||
init_chs = math.ceil(out_chs / ratio)
|
||||
new_chs = init_chs * (ratio - 1)
|
||||
self.primary_conv = nn.Sequential(
|
||||
nn.Conv2d(in_chs, init_chs, kernel_size, stride, kernel_size // 2, bias=False),
|
||||
nn.BatchNorm2d(init_chs),
|
||||
act_layer(inplace=True) if use_act else nn.Identity(),
|
||||
)
|
||||
self.cheap_operation = nn.Sequential(
|
||||
nn.Conv2d(init_chs, new_chs, dw_size, 1, dw_size // 2, groups=init_chs, bias=False),
|
||||
nn.BatchNorm2d(new_chs),
|
||||
act_layer(inplace=True) if use_act else nn.Identity(),
|
||||
)
|
||||
self.short_conv = nn.Sequential(
|
||||
nn.Conv2d(in_chs, out_chs, kernel_size, stride, kernel_size // 2, bias=False),
|
||||
nn.BatchNorm2d(out_chs),
|
||||
nn.Conv2d(out_chs, out_chs, kernel_size=(1, 5), stride=1, padding=(0, 2), groups=out_chs, bias=False),
|
||||
nn.BatchNorm2d(out_chs),
|
||||
nn.Conv2d(out_chs, out_chs, kernel_size=(5, 1), stride=1, padding=(2, 0), groups=out_chs, bias=False),
|
||||
nn.BatchNorm2d(out_chs),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
res = self.short_conv(F.avg_pool2d(x, kernel_size=2, stride=2))
|
||||
x1 = self.primary_conv(x)
|
||||
x2 = self.cheap_operation(x1)
|
||||
out = torch.cat([x1, x2], dim=1)
|
||||
return out[:, :self.out_chs, :, :] * F.interpolate(
|
||||
self.gate_fn(res), size=(out.shape[-2], out.shape[-1]), mode='nearest')
|
||||
|
||||
|
||||
class GhostBottleneck(nn.Module):
|
||||
""" Ghost bottleneck w/ optional SE"""
|
||||
|
||||
@ -71,13 +117,17 @@ class GhostBottleneck(nn.Module):
|
||||
stride=1,
|
||||
act_layer=nn.ReLU,
|
||||
se_ratio=0.,
|
||||
mode='original',
|
||||
):
|
||||
super(GhostBottleneck, self).__init__()
|
||||
has_se = se_ratio is not None and se_ratio > 0.
|
||||
self.stride = stride
|
||||
|
||||
# Point-wise expansion
|
||||
self.ghost1 = GhostModule(in_chs, mid_chs, relu=True)
|
||||
if mode == 'original':
|
||||
self.ghost1 = GhostModule(in_chs, mid_chs, use_act=True, act_layer=act_layer)
|
||||
else:
|
||||
self.ghost1 = GhostModuleV2(in_chs, mid_chs, use_act=True, act_layer=act_layer)
|
||||
|
||||
# Depth-wise convolution
|
||||
if self.stride > 1:
|
||||
@ -93,7 +143,7 @@ class GhostBottleneck(nn.Module):
|
||||
self.se = _SE_LAYER(mid_chs, rd_ratio=se_ratio) if has_se else None
|
||||
|
||||
# Point-wise linear projection
|
||||
self.ghost2 = GhostModule(mid_chs, out_chs, relu=False)
|
||||
self.ghost2 = GhostModule(mid_chs, out_chs, use_act=False)
|
||||
|
||||
# shortcut
|
||||
if in_chs == out_chs and self.stride == 1:
|
||||
@ -140,6 +190,7 @@ class GhostNet(nn.Module):
|
||||
output_stride=32,
|
||||
global_pool='avg',
|
||||
drop_rate=0.2,
|
||||
version='v1',
|
||||
):
|
||||
super(GhostNet, self).__init__()
|
||||
# setting of inverted residual blocks
|
||||
@ -160,8 +211,8 @@ class GhostNet(nn.Module):
|
||||
|
||||
# building inverted residual blocks
|
||||
stages = nn.ModuleList([])
|
||||
block = GhostBottleneck
|
||||
stage_idx = 0
|
||||
layer_idx = 0
|
||||
net_stride = 2
|
||||
for cfg in self.cfgs:
|
||||
layers = []
|
||||
@ -169,8 +220,12 @@ class GhostNet(nn.Module):
|
||||
for k, exp_size, c, se_ratio, s in cfg:
|
||||
out_chs = make_divisible(c * width, 4)
|
||||
mid_chs = make_divisible(exp_size * width, 4)
|
||||
layers.append(block(prev_chs, mid_chs, out_chs, k, s, se_ratio=se_ratio))
|
||||
layer_kwargs = {}
|
||||
if version == 'v2' and layer_idx > 1:
|
||||
layer_kwargs['mode'] = 'attn'
|
||||
layers.append(GhostBottleneck(prev_chs, mid_chs, out_chs, k, s, se_ratio=se_ratio, **layer_kwargs))
|
||||
prev_chs = out_chs
|
||||
layer_idx += 1
|
||||
if s > 1:
|
||||
net_stride *= 2
|
||||
self.feature_info.append(dict(
|
||||
@ -246,6 +301,15 @@ class GhostNet(nn.Module):
|
||||
return x
|
||||
|
||||
|
||||
def checkpoint_filter_fn(state_dict, model: nn.Module):
|
||||
out_dict = {}
|
||||
for k, v in state_dict.items():
|
||||
if 'total' in k:
|
||||
continue
|
||||
out_dict[k] = v
|
||||
return out_dict
|
||||
|
||||
|
||||
def _create_ghostnet(variant, width=1.0, pretrained=False, **kwargs):
|
||||
"""
|
||||
Constructs a GhostNet model
|
||||
@ -285,6 +349,7 @@ def _create_ghostnet(variant, width=1.0, pretrained=False, **kwargs):
|
||||
GhostNet,
|
||||
variant,
|
||||
pretrained,
|
||||
pretrained_filter_fn=checkpoint_filter_fn,
|
||||
feature_cfg=dict(flatten_sequential=True),
|
||||
**model_kwargs,
|
||||
)
|
||||
@ -293,7 +358,7 @@ def _create_ghostnet(variant, width=1.0, pretrained=False, **kwargs):
|
||||
def _cfg(url='', **kwargs):
|
||||
return {
|
||||
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
|
||||
'crop_pct': 0.875, 'interpolation': 'bilinear',
|
||||
'crop_pct': 0.875, 'interpolation': 'bicubic',
|
||||
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
||||
'first_conv': 'conv_stem', 'classifier': 'classifier',
|
||||
**kwargs
|
||||
@ -303,8 +368,22 @@ def _cfg(url='', **kwargs):
|
||||
default_cfgs = generate_default_cfgs({
|
||||
'ghostnet_050.untrained': _cfg(),
|
||||
'ghostnet_100.in1k': _cfg(
|
||||
url='https://github.com/huawei-noah/CV-backbones/releases/download/ghostnet_pth/ghostnet_1x.pth'),
|
||||
hf_hub_id='timm/',
|
||||
# url='https://github.com/huawei-noah/CV-backbones/releases/download/ghostnet_pth/ghostnet_1x.pth'
|
||||
),
|
||||
'ghostnet_130.untrained': _cfg(),
|
||||
'ghostnetv2_100.in1k': _cfg(
|
||||
hf_hub_id='timm/',
|
||||
# url='https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/GhostNetV2/ck_ghostnetv2_10.pth.tar'
|
||||
),
|
||||
'ghostnetv2_130.in1k': _cfg(
|
||||
hf_hub_id='timm/',
|
||||
# url='https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/GhostNetV2/ck_ghostnetv2_13.pth.tar'
|
||||
),
|
||||
'ghostnetv2_160.in1k': _cfg(
|
||||
hf_hub_id='timm/',
|
||||
# url='https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/GhostNetV2/ck_ghostnetv2_16.pth.tar'
|
||||
),
|
||||
})
|
||||
|
||||
|
||||
@ -327,3 +406,24 @@ def ghostnet_130(pretrained=False, **kwargs) -> GhostNet:
|
||||
""" GhostNet-1.3x """
|
||||
model = _create_ghostnet('ghostnet_130', width=1.3, pretrained=pretrained, **kwargs)
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def ghostnetv2_100(pretrained=False, **kwargs) -> GhostNet:
|
||||
""" GhostNetV2-1.0x """
|
||||
model = _create_ghostnet('ghostnetv2_100', width=1.0, pretrained=pretrained, version='v2', **kwargs)
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def ghostnetv2_130(pretrained=False, **kwargs) -> GhostNet:
|
||||
""" GhostNetV2-1.3x """
|
||||
model = _create_ghostnet('ghostnetv2_130', width=1.3, pretrained=pretrained, version='v2', **kwargs)
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def ghostnetv2_160(pretrained=False, **kwargs) -> GhostNet:
|
||||
""" GhostNetV2-1.6x """
|
||||
model = _create_ghostnet('ghostnetv2_160', width=1.6, pretrained=pretrained, version='v2', **kwargs)
|
||||
return model
|
||||
|
@ -1,317 +0,0 @@
|
||||
"""
|
||||
An implementation of GhostNet Model as defined in:
|
||||
GhostNetV2: Enhance Cheap Operation with Long-Range Attention. https://proceedings.neurips.cc/paper_files/paper/2022/file/40b60852a4abdaa696b5a1a78da34635-Paper-Conference.pdf
|
||||
The train script of the model is similar to that of GhostNet.
|
||||
Original model: https://github.com/huawei-noah/Efficient-AI-Backbones/blob/master/ghostnetv2_pytorch/model/ghostnetv2_torch.py
|
||||
"""
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import math
|
||||
|
||||
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
||||
from timm.layers import SelectAdaptivePool2d, Linear, make_divisible
|
||||
from ._builder import build_model_with_cfg
|
||||
from ._registry import register_model
|
||||
from ._registry import register_model, generate_default_cfgs
|
||||
|
||||
__all__ = ['GhostNetV2']
|
||||
|
||||
|
||||
|
||||
def hard_sigmoid(x, inplace: bool = False):
|
||||
if inplace:
|
||||
return x.add_(3.).clamp_(0., 6.).div_(6.)
|
||||
else:
|
||||
return F.relu6(x + 3.) / 6.
|
||||
|
||||
class SqueezeExcite(nn.Module):
|
||||
def __init__(self, in_chs, se_ratio=0.25, reduced_base_chs=None,
|
||||
act_layer=nn.ReLU, gate_fn=hard_sigmoid, divisor=4, **_):
|
||||
super(SqueezeExcite, self).__init__()
|
||||
self.gate_fn = gate_fn
|
||||
reduced_chs = make_divisible((reduced_base_chs or in_chs) * se_ratio, divisor)
|
||||
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
||||
self.conv_reduce = nn.Conv2d(in_chs, reduced_chs, 1, bias=True)
|
||||
self.act1 = act_layer(inplace=True)
|
||||
self.conv_expand = nn.Conv2d(reduced_chs, in_chs, 1, bias=True)
|
||||
|
||||
def forward(self, x):
|
||||
x_se = self.avg_pool(x)
|
||||
x_se = self.conv_reduce(x_se)
|
||||
x_se = self.act1(x_se)
|
||||
x_se = self.conv_expand(x_se)
|
||||
x = x * self.gate_fn(x_se)
|
||||
return x
|
||||
|
||||
class ConvBnAct(nn.Module):
|
||||
def __init__(self, in_chs, out_chs, kernel_size,
|
||||
stride=1, act_layer=nn.ReLU):
|
||||
super(ConvBnAct, self).__init__()
|
||||
self.conv = nn.Conv2d(in_chs, out_chs, kernel_size, stride, kernel_size//2, bias=False)
|
||||
self.bn1 = nn.BatchNorm2d(out_chs)
|
||||
self.act1 = act_layer(inplace=True)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv(x)
|
||||
x = self.bn1(x)
|
||||
x = self.act1(x)
|
||||
return x
|
||||
|
||||
class GhostModuleV2(nn.Module):
|
||||
|
||||
def __init__(self, inp, oup, kernel_size=1, ratio=2, dw_size=3, stride=1, relu=True,mode=None):
|
||||
super(GhostModuleV2, self).__init__()
|
||||
self.mode=mode
|
||||
self.gate_fn=nn.Sigmoid()
|
||||
|
||||
if self.mode in ['original']:
|
||||
self.oup = oup
|
||||
init_channels = math.ceil(oup / ratio)
|
||||
new_channels = init_channels*(ratio-1)
|
||||
self.primary_conv = nn.Sequential(
|
||||
nn.Conv2d(inp, init_channels, kernel_size, stride, kernel_size//2, bias=False),
|
||||
nn.BatchNorm2d(init_channels),
|
||||
nn.ReLU(inplace=True) if relu else nn.Sequential(),
|
||||
)
|
||||
self.cheap_operation = nn.Sequential(
|
||||
nn.Conv2d(init_channels, new_channels, dw_size, 1, dw_size//2, groups=init_channels, bias=False),
|
||||
nn.BatchNorm2d(new_channels),
|
||||
nn.ReLU(inplace=True) if relu else nn.Sequential(),
|
||||
)
|
||||
elif self.mode in ['attn']:
|
||||
self.oup = oup
|
||||
init_channels = math.ceil(oup / ratio)
|
||||
new_channels = init_channels*(ratio-1)
|
||||
self.primary_conv = nn.Sequential(
|
||||
nn.Conv2d(inp, init_channels, kernel_size, stride, kernel_size//2, bias=False),
|
||||
nn.BatchNorm2d(init_channels),
|
||||
nn.ReLU(inplace=True) if relu else nn.Sequential(),
|
||||
)
|
||||
self.cheap_operation = nn.Sequential(
|
||||
nn.Conv2d(init_channels, new_channels, dw_size, 1, dw_size//2, groups=init_channels, bias=False),
|
||||
nn.BatchNorm2d(new_channels),
|
||||
nn.ReLU(inplace=True) if relu else nn.Sequential(),
|
||||
)
|
||||
self.short_conv = nn.Sequential(
|
||||
nn.Conv2d(inp, oup, kernel_size, stride, kernel_size//2, bias=False),
|
||||
nn.BatchNorm2d(oup),
|
||||
nn.Conv2d(oup, oup, kernel_size=(1,5), stride=1, padding=(0,2), groups=oup,bias=False),
|
||||
nn.BatchNorm2d(oup),
|
||||
nn.Conv2d(oup, oup, kernel_size=(5,1), stride=1, padding=(2,0), groups=oup,bias=False),
|
||||
nn.BatchNorm2d(oup),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
if self.mode in ['original']:
|
||||
x1 = self.primary_conv(x)
|
||||
x2 = self.cheap_operation(x1)
|
||||
out = torch.cat([x1,x2], dim=1)
|
||||
return out[:,:self.oup,:,:]
|
||||
elif self.mode in ['attn']:
|
||||
res=self.short_conv(F.avg_pool2d(x,kernel_size=2,stride=2))
|
||||
x1 = self.primary_conv(x)
|
||||
x2 = self.cheap_operation(x1)
|
||||
out = torch.cat([x1,x2], dim=1)
|
||||
return out[:,:self.oup,:,:]*F.interpolate(self.gate_fn(res),size=(out.shape[-2],out.shape[-1]),mode='nearest')
|
||||
|
||||
|
||||
class GhostBottleneckV2(nn.Module):
|
||||
|
||||
def __init__(self, in_chs, mid_chs, out_chs, dw_kernel_size=3,
|
||||
stride=1, act_layer=nn.ReLU, se_ratio=0.,layer_id=None):
|
||||
super(GhostBottleneckV2, self).__init__()
|
||||
has_se = se_ratio is not None and se_ratio > 0.
|
||||
self.stride = stride
|
||||
|
||||
# Point-wise expansion
|
||||
if layer_id<=1:
|
||||
self.ghost1 = GhostModuleV2(in_chs, mid_chs, relu=True,mode='original')
|
||||
else:
|
||||
self.ghost1 = GhostModuleV2(in_chs, mid_chs, relu=True,mode='attn')
|
||||
|
||||
# Depth-wise convolution
|
||||
if self.stride > 1:
|
||||
self.conv_dw = nn.Conv2d(mid_chs, mid_chs, dw_kernel_size, stride=stride,
|
||||
padding=(dw_kernel_size-1)//2,groups=mid_chs, bias=False)
|
||||
self.bn_dw = nn.BatchNorm2d(mid_chs)
|
||||
|
||||
# Squeeze-and-excitation
|
||||
if has_se:
|
||||
self.se = SqueezeExcite(mid_chs, se_ratio=se_ratio)
|
||||
else:
|
||||
self.se = None
|
||||
|
||||
self.ghost2 = GhostModuleV2(mid_chs, out_chs, relu=False,mode='original')
|
||||
|
||||
# shortcut
|
||||
if (in_chs == out_chs and self.stride == 1):
|
||||
self.shortcut = nn.Sequential()
|
||||
else:
|
||||
self.shortcut = nn.Sequential(
|
||||
nn.Conv2d(in_chs, in_chs, dw_kernel_size, stride=stride,
|
||||
padding=(dw_kernel_size-1)//2, groups=in_chs, bias=False),
|
||||
nn.BatchNorm2d(in_chs),
|
||||
nn.Conv2d(in_chs, out_chs, 1, stride=1, padding=0, bias=False),
|
||||
nn.BatchNorm2d(out_chs),
|
||||
)
|
||||
def forward(self, x):
|
||||
residual = x
|
||||
x = self.ghost1(x)
|
||||
if self.stride > 1:
|
||||
x = self.conv_dw(x)
|
||||
x = self.bn_dw(x)
|
||||
if self.se is not None:
|
||||
x = self.se(x)
|
||||
x = self.ghost2(x)
|
||||
x += self.shortcut(residual)
|
||||
return x
|
||||
|
||||
|
||||
class GhostNetV2(nn.Module):
|
||||
def __init__(self, cfgs, num_classes=1000, width=1.0, in_chans=3,output_stride=32, drop_rate=0.2,global_pool='avg',block=GhostBottleneckV2):
|
||||
super(GhostNetV2, self).__init__()
|
||||
# setting of inverted residual blocks
|
||||
assert output_stride == 32, 'only output_stride==32 is valid, dilation not supported'
|
||||
|
||||
self.cfgs = cfgs
|
||||
self.drop_rate = drop_rate
|
||||
|
||||
# building first layer
|
||||
output_channel = make_divisible(16 * width, 4)
|
||||
self.conv_stem = nn.Conv2d(in_chans, output_channel, 3, 2, 1, bias=False)
|
||||
self.bn1 = nn.BatchNorm2d(output_channel)
|
||||
self.act1 = nn.ReLU(inplace=True)
|
||||
input_channel = output_channel
|
||||
|
||||
# building inverted residual blocks
|
||||
stages = []
|
||||
#block = block
|
||||
layer_id=0
|
||||
for cfg in self.cfgs:
|
||||
layers = []
|
||||
for k, exp_size, c, se_ratio, s in cfg:
|
||||
output_channel = make_divisible(c * width, 4)
|
||||
hidden_channel = make_divisible(exp_size * width, 4)
|
||||
if block==GhostBottleneckV2:
|
||||
layers.append(block(input_channel, hidden_channel, output_channel, k, s,
|
||||
se_ratio=se_ratio,layer_id=layer_id))
|
||||
input_channel = output_channel
|
||||
layer_id+=1
|
||||
stages.append(nn.Sequential(*layers))
|
||||
|
||||
output_channel = make_divisible(exp_size * width, 4)
|
||||
stages.append(nn.Sequential(ConvBnAct(input_channel, output_channel, 1)))
|
||||
input_channel = output_channel
|
||||
|
||||
self.blocks = nn.Sequential(*stages)
|
||||
|
||||
# building last several layers
|
||||
output_channel = 1280
|
||||
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
|
||||
self.conv_head = nn.Conv2d(input_channel, output_channel, 1, 1, 0, bias=True)
|
||||
self.act2 = nn.ReLU(inplace=True)
|
||||
self.flatten = nn.Flatten(1) if global_pool else nn.Identity() # don't flatten if pooling disabled
|
||||
self.classifier = nn.Linear(output_channel, num_classes)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv_stem(x)
|
||||
x = self.bn1(x)
|
||||
x = self.act1(x)
|
||||
x = self.blocks(x)
|
||||
x = self.global_pool(x)
|
||||
x = self.conv_head(x)
|
||||
x = self.act2(x)
|
||||
x = x.view(x.size(0), -1)
|
||||
if self.drop_rate > 0.:
|
||||
x = F.drop_rate(x, p=self.drop_rate, training=self.training)
|
||||
x = self.classifier(x)
|
||||
return x
|
||||
|
||||
def _create_ghostnetv2(variant, width=1.0, pretrained=False, **kwargs):
|
||||
|
||||
"""
|
||||
Constructs a GhostNetV2 model
|
||||
"""
|
||||
cfgs = [
|
||||
# k, t, c, SE, s
|
||||
# stage1
|
||||
[[3, 16, 16, 0, 1]],
|
||||
# stage2
|
||||
[[3, 48, 24, 0, 2]],
|
||||
[[3, 72, 24, 0, 1]],
|
||||
# stage3
|
||||
[[5, 72, 40, 0.25, 2]],
|
||||
[[5, 120, 40, 0.25, 1]],
|
||||
# stage4
|
||||
[[3, 240, 80, 0, 2]],
|
||||
[[3, 200, 80, 0, 1],
|
||||
[3, 184, 80, 0, 1],
|
||||
[3, 184, 80, 0, 1],
|
||||
[3, 480, 112, 0.25, 1],
|
||||
[3, 672, 112, 0.25, 1]
|
||||
],
|
||||
# stage5
|
||||
[[5, 672, 160, 0.25, 2]],
|
||||
[[5, 960, 160, 0, 1],
|
||||
[5, 960, 160, 0.25, 1],
|
||||
[5, 960, 160, 0, 1],
|
||||
[5, 960, 160, 0.25, 1]
|
||||
]
|
||||
]
|
||||
model_kwargs = dict(
|
||||
cfgs=cfgs,
|
||||
width=width,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
return build_model_with_cfg(
|
||||
GhostNetV2,
|
||||
variant,
|
||||
pretrained,
|
||||
feature_cfg=dict(flatten_sequential=True),
|
||||
**model_kwargs,
|
||||
)
|
||||
|
||||
# return GhostNetV2(cfgs, num_classes=kwargs['num_classes'],
|
||||
# width=kwargs['width'],
|
||||
# drop_rate=kwargs['drop_rate'],
|
||||
# args=kwargs['args'])
|
||||
|
||||
|
||||
def _cfg(url='', **kwargs):
|
||||
return {
|
||||
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
|
||||
'crop_pct': 0.875, 'interpolation': 'bilinear',
|
||||
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
||||
'first_conv': 'conv_stem', 'classifier': 'classifier',
|
||||
**kwargs
|
||||
}
|
||||
|
||||
default_cfgs = generate_default_cfgs({
|
||||
'ghostnetv2_100.in1k': _cfg(
|
||||
url='https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/GhostNetV2/ck_ghostnetv2_10.pth.tar'),
|
||||
'ghostnetv2_130.in1k': _cfg(
|
||||
url='https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/GhostNetV2/ck_ghostnetv2_13.pth.tar'),
|
||||
'ghostnetv2_160.in1k': _cfg(
|
||||
url='https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/GhostNetV2/ck_ghostnetv2_16.pth.tar'),
|
||||
})
|
||||
|
||||
|
||||
@register_model
|
||||
def ghostnetv2_100(pretrained=False, **kwargs) -> GhostNetV2:
|
||||
""" GhostNetV2-1.0x """
|
||||
model = _create_ghostnetv2('ghostnetv2_100', width=1.0, pretrained=pretrained, **kwargs)
|
||||
return model
|
||||
|
||||
@register_model
|
||||
def ghostnetv2_130(pretrained=False, **kwargs) -> GhostNetV2:
|
||||
""" GhostNetV2-1.3x """
|
||||
model = _create_ghostnetv2('ghostnetv2_130', width=1.3, pretrained=pretrained, **kwargs)
|
||||
return model
|
||||
|
||||
@register_model
|
||||
def ghostnetv2_160(pretrained=False, **kwargs) -> GhostNetV2:
|
||||
""" GhostNetV2-1.6x """
|
||||
model = _create_ghostnetv2('ghostnetv2_160', width=1.6, pretrained=pretrained, **kwargs)
|
||||
return model
|
Loading…
x
Reference in New Issue
Block a user