mirror of
https://github.com/huggingface/pytorch-image-models.git
synced 2025-06-03 15:01:08 +08:00
Resnext added, changes to bring it and seresnet in line with rest of models
This commit is contained in:
parent
e0cfeb7d8e
commit
1577c52976
@ -10,8 +10,8 @@ from .densenet import densenet161, densenet121, densenet169, densenet201
|
||||
from .resnet import resnet18, resnet34, resnet50, resnet101, resnet152
|
||||
from .fbresnet200 import fbresnet200
|
||||
from .dpn import dpn68, dpn68b, dpn92, dpn98, dpn131, dpn107
|
||||
from .senet import seresnet18, seresnet34, seresnet50, seresnet101, seresnet152,\
|
||||
seresnext50_32x4d, seresnext101_32x4d
|
||||
from .senet import seresnet18, seresnet34, seresnet50, seresnet101, seresnet152, \
|
||||
seresnext26_32x4d, seresnext50_32x4d, seresnext101_32x4d
|
||||
from .resnext import resnext50, resnext101, resnext152
|
||||
|
||||
|
||||
@ -112,6 +112,8 @@ def create_model(
|
||||
model = seresnet101(num_classes=num_classes, pretrained=pretrained, **kwargs)
|
||||
elif model_name == 'seresnet152':
|
||||
model = seresnet152(num_classes=num_classes, pretrained=pretrained, **kwargs)
|
||||
elif model_name == 'seresnext26_32x4d':
|
||||
model = seresnext26_32x4d(num_classes=num_classes, pretrained=pretrained, **kwargs)
|
||||
elif model_name == 'seresnext50_32x4d':
|
||||
model = seresnext50_32x4d(num_classes=num_classes, pretrained=pretrained, **kwargs)
|
||||
elif model_name == 'seresnext101_32x4d':
|
||||
|
194
models/resnext.py
Normal file
194
models/resnext.py
Normal file
@ -0,0 +1,194 @@
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import math
|
||||
import torch.utils.model_zoo as model_zoo
|
||||
from models.adaptive_avgmax_pool import AdaptiveAvgMaxPool2d
|
||||
|
||||
__all__ = ['ResNeXt', 'resnext50', 'resnext101', 'resnext152']
|
||||
|
||||
|
||||
def conv3x3(in_planes, out_planes, stride=1):
|
||||
"3x3 convolution with padding"
|
||||
return nn.Conv2d(
|
||||
in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
|
||||
|
||||
|
||||
class ResNeXtBottleneckC(nn.Module):
|
||||
expansion = 4
|
||||
|
||||
def __init__(self, inplanes, planes, stride=1, downsample=None, cardinality=32, base_width=4):
|
||||
super(ResNeXtBottleneckC, self).__init__()
|
||||
|
||||
width = math.floor(planes / 64 * cardinality * base_width)
|
||||
|
||||
self.conv1 = nn.Conv2d(inplanes, width, kernel_size=1, bias=False)
|
||||
self.bn1 = nn.BatchNorm2d(width)
|
||||
self.conv2 = nn.Conv2d(width, width, kernel_size=3, stride=stride,
|
||||
padding=1, bias=False, groups=cardinality)
|
||||
self.bn2 = nn.BatchNorm2d(width)
|
||||
self.conv3 = nn.Conv2d(width, planes * 4, kernel_size=1, bias=False)
|
||||
self.bn3 = nn.BatchNorm2d(planes * 4)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.downsample = downsample
|
||||
self.stride = stride
|
||||
|
||||
def forward(self, x):
|
||||
residual = x
|
||||
|
||||
out = self.conv1(x)
|
||||
out = self.bn1(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv2(out)
|
||||
out = self.bn2(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv3(out)
|
||||
out = self.bn3(out)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(x)
|
||||
|
||||
out += residual
|
||||
out = self.relu(out)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class ResNeXt(nn.Module):
|
||||
|
||||
def __init__(self, block, layers, num_classes=1000, cardinality=32, base_width=4, shortcut='C',
|
||||
drop_rate=0., global_pool='avg'):
|
||||
self.num_classes = num_classes
|
||||
self.inplanes = 64
|
||||
self.cardinality = cardinality
|
||||
self.base_width = base_width
|
||||
self.shortcut = shortcut
|
||||
self.drop_rate = drop_rate
|
||||
super(ResNeXt, self).__init__()
|
||||
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
|
||||
self.bn1 = nn.BatchNorm2d(64)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
||||
self.layer1 = self._make_layer(block, 64, layers[0])
|
||||
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
|
||||
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
|
||||
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
|
||||
self.avgpool = AdaptiveAvgMaxPool2d(pool_type=global_pool)
|
||||
self.num_features = 512 * block.expansion
|
||||
self.fc = nn.Linear(self.num_features, num_classes)
|
||||
|
||||
for m in self.modules():
|
||||
if isinstance(m, nn.Conv2d):
|
||||
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
||||
m.weight.data.normal_(0, math.sqrt(2. / n))
|
||||
elif isinstance(m, nn.BatchNorm2d):
|
||||
m.weight.data.fill_(1)
|
||||
m.bias.data.zero_()
|
||||
|
||||
def _make_layer(self, block, planes, blocks, stride=1):
|
||||
downsample = None
|
||||
reshape = stride != 1 or self.inplanes != planes * block.expansion
|
||||
use_conv = (self.shortcut == 'C') or (self.shortcut == 'B' and reshape)
|
||||
|
||||
if use_conv:
|
||||
downsample = nn.Sequential(
|
||||
nn.Conv2d(
|
||||
self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False),
|
||||
nn.BatchNorm2d(planes * block.expansion),
|
||||
)
|
||||
elif reshape:
|
||||
downsample = nn.AvgPool2d(3, stride=stride)
|
||||
|
||||
layers = [block(self.inplanes, planes, stride, downsample, self.cardinality, self.base_width)]
|
||||
self.inplanes = planes * block.expansion
|
||||
|
||||
if self.shortcut == 'C':
|
||||
shortcut = nn.Sequential(
|
||||
nn.Conv2d(
|
||||
self.inplanes, planes * block.expansion, kernel_size=1, stride=1, bias=False),
|
||||
nn.BatchNorm2d(planes * block.expansion),
|
||||
)
|
||||
else:
|
||||
shortcut = None
|
||||
for i in range(1, blocks):
|
||||
layers.append(block(self.inplanes, planes, 1, shortcut, self.cardinality, self.base_width))
|
||||
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
def get_classifier(self):
|
||||
return self.fc
|
||||
|
||||
def reset_classifier(self, num_classes, global_pool='avg'):
|
||||
self.avgpool = AdaptiveAvgMaxPool2d(pool_type=global_pool)
|
||||
self.num_classes = num_classes
|
||||
del self.fc
|
||||
if num_classes:
|
||||
self.fc = nn.Linear(self.num_features, num_classes)
|
||||
else:
|
||||
self.fc = None
|
||||
|
||||
def forward_features(self, x, pool=True):
|
||||
x = self.conv1(x)
|
||||
x = self.bn1(x)
|
||||
x = self.relu(x)
|
||||
x = self.maxpool(x)
|
||||
|
||||
x = self.layer1(x)
|
||||
x = self.layer2(x)
|
||||
x = self.layer3(x)
|
||||
x = self.layer4(x)
|
||||
if pool:
|
||||
x = self.avgpool(x)
|
||||
x = x.view(x.size(0), -1)
|
||||
return x
|
||||
|
||||
def forward(self, x):
|
||||
x = self.forward_features(x)
|
||||
if self.drop_rate > 0.:
|
||||
x = F.dropout(x, p=self.drop_rate, training=self.training)
|
||||
x = self.fc(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def resnext50(cardinality=32, base_width=4, shortcut='C', pretrained=False, **kwargs):
|
||||
"""Constructs a ResNeXt-50 model.
|
||||
|
||||
Args:
|
||||
cardinality (int): Cardinality of the aggregated transform
|
||||
base_width (int): Base width of the grouped convolution
|
||||
shortcut ('A'|'B'|'C'): 'B' use 1x1 conv to downsample, 'C' use 1x1 conv on every residual connection
|
||||
"""
|
||||
model = ResNeXt(
|
||||
ResNeXtBottleneckC, [3, 4, 6, 3], cardinality=cardinality,
|
||||
base_width=base_width, shortcut=shortcut, **kwargs)
|
||||
return model
|
||||
|
||||
|
||||
def resnext101(cardinality=32, base_width=4, shortcut='C', pretrained=False, **kwargs):
|
||||
"""Constructs a ResNeXt-101 model.
|
||||
|
||||
Args:
|
||||
cardinality (int): Cardinality of the aggregated transform
|
||||
base_width (int): Base width of the grouped convolution
|
||||
shortcut ('A'|'B'|'C'): 'B' use 1x1 conv to downsample, 'C' use 1x1 conv on every residual connection
|
||||
"""
|
||||
model = ResNeXt(
|
||||
ResNeXtBottleneckC, [3, 4, 23, 3], cardinality=cardinality,
|
||||
base_width=base_width, shortcut=shortcut, **kwargs)
|
||||
return model
|
||||
|
||||
|
||||
def resnext152(cardinality=32, base_width=4, shortcut='C', pretrained=False, **kwargs):
|
||||
"""Constructs a ResNeXt-152 model.
|
||||
|
||||
Args:
|
||||
cardinality (int): Cardinality of the aggregated transform
|
||||
base_width (int): Base width of the grouped convolution
|
||||
shortcut ('A'|'B'|'C'): 'B' use 1x1 conv to downsample, 'C' use 1x1 conv on every residual connection
|
||||
"""
|
||||
model = ResNeXt(
|
||||
ResNeXtBottleneckC, [3, 8, 36, 3], cardinality=cardinality,
|
||||
base_width=base_width, shortcut=shortcut, **kwargs)
|
||||
return model
|
@ -7,7 +7,9 @@ from collections import OrderedDict
|
||||
import math
|
||||
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.utils import model_zoo
|
||||
from models.adaptive_avgmax_pool import AdaptiveAvgMaxPool2d
|
||||
|
||||
__all__ = ['SENet', 'senet154', 'seresnet50', 'seresnet101', 'seresnet152',
|
||||
'seresnext50_32x4d', 'seresnext101_32x4d']
|
||||
@ -193,9 +195,9 @@ class SEResNetBlock(nn.Module):
|
||||
|
||||
class SENet(nn.Module):
|
||||
|
||||
def __init__(self, block, layers, groups, reduction, dropout_p=0.2,
|
||||
def __init__(self, block, layers, groups, reduction, drop_rate=0.2,
|
||||
inchans=3, inplanes=128, input_3x3=True, downsample_kernel_size=3,
|
||||
downsample_padding=1, num_classes=1000):
|
||||
downsample_padding=1, num_classes=1000, global_pool='avg'):
|
||||
"""
|
||||
Parameters
|
||||
----------
|
||||
@ -304,8 +306,8 @@ class SENet(nn.Module):
|
||||
downsample_kernel_size=downsample_kernel_size,
|
||||
downsample_padding=downsample_padding
|
||||
)
|
||||
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
||||
self.dropout = nn.Dropout(dropout_p) if dropout_p is not None else None
|
||||
self.avg_pool = AdaptiveAvgMaxPool2d(pool_type=global_pool)
|
||||
self.drop_rate = drop_rate
|
||||
self.num_features = 512 * block.expansion
|
||||
self.last_linear = nn.Linear(self.num_features, num_classes)
|
||||
|
||||
@ -354,8 +356,8 @@ class SENet(nn.Module):
|
||||
return x
|
||||
|
||||
def logits(self, x):
|
||||
if self.dropout is not None:
|
||||
x = self.dropout(x)
|
||||
if self.drop_rate > 0.:
|
||||
x = F.dropout(x, p=self.drop_rate, training=self.training)
|
||||
x = self.last_linear(x)
|
||||
return x
|
||||
|
||||
@ -375,79 +377,89 @@ def _load_pretrained(model, url, inchans=3):
|
||||
model.load_state_dict(state_dict)
|
||||
|
||||
|
||||
def senet154(num_classes=1000, inchans=3, pretrained='imagenet'):
|
||||
def senet154(num_classes=1000, inchans=3, pretrained='imagenet', **kwargs):
|
||||
model = SENet(SEBottleneck, [3, 8, 36, 3], groups=64, reduction=16,
|
||||
dropout_p=0.2, num_classes=num_classes)
|
||||
num_classes=num_classes, **kwargs)
|
||||
if pretrained:
|
||||
_load_pretrained(model, model_urls['senet154'], inchans)
|
||||
return model
|
||||
|
||||
|
||||
def seresnet18(num_classes=1000, inchans=3, pretrained='imagenet'):
|
||||
def seresnet18(num_classes=1000, inchans=3, pretrained='imagenet', **kwargs):
|
||||
model = SENet(SEResNetBlock, [2, 2, 2, 2], groups=1, reduction=16,
|
||||
dropout_p=None, inplanes=64, input_3x3=False,
|
||||
inplanes=64, input_3x3=False,
|
||||
downsample_kernel_size=1, downsample_padding=0,
|
||||
num_classes=num_classes)
|
||||
num_classes=num_classes, **kwargs)
|
||||
if pretrained:
|
||||
_load_pretrained(model, model_urls['seresnet18'], inchans)
|
||||
return model
|
||||
|
||||
|
||||
def seresnet34(num_classes=1000, inchans=3, pretrained='imagenet'):
|
||||
def seresnet34(num_classes=1000, inchans=3, pretrained='imagenet', **kwargs):
|
||||
model = SENet(SEResNetBlock, [3, 4, 6, 3], groups=1, reduction=16,
|
||||
dropout_p=None, inplanes=64, input_3x3=False,
|
||||
inplanes=64, input_3x3=False,
|
||||
downsample_kernel_size=1, downsample_padding=0,
|
||||
num_classes=num_classes)
|
||||
num_classes=num_classes, **kwargs)
|
||||
if pretrained:
|
||||
_load_pretrained(model, model_urls['seresnet34'], inchans)
|
||||
return model
|
||||
|
||||
|
||||
def seresnet50(num_classes=1000, inchans=3, pretrained='imagenet'):
|
||||
def seresnet50(num_classes=1000, inchans=3, pretrained='imagenet', **kwargs):
|
||||
model = SENet(SEResNetBottleneck, [3, 4, 6, 3], groups=1, reduction=16,
|
||||
dropout_p=None, inplanes=64, input_3x3=False,
|
||||
inplanes=64, input_3x3=False,
|
||||
downsample_kernel_size=1, downsample_padding=0,
|
||||
num_classes=num_classes)
|
||||
num_classes=num_classes, **kwargs)
|
||||
if pretrained:
|
||||
_load_pretrained(model, model_urls['seresnet50'], inchans)
|
||||
return model
|
||||
|
||||
|
||||
def seresnet101(num_classes=1000, inchans=3, pretrained='imagenet'):
|
||||
def seresnet101(num_classes=1000, inchans=3, pretrained='imagenet', **kwargs):
|
||||
model = SENet(SEResNetBottleneck, [3, 4, 23, 3], groups=1, reduction=16,
|
||||
dropout_p=None, inplanes=64, input_3x3=False,
|
||||
inplanes=64, input_3x3=False,
|
||||
downsample_kernel_size=1, downsample_padding=0,
|
||||
num_classes=num_classes)
|
||||
num_classes=num_classes, **kwargs)
|
||||
if pretrained:
|
||||
_load_pretrained(model, model_urls['seresnet101'], inchans)
|
||||
return model
|
||||
|
||||
|
||||
def seresnet152(num_classes=1000, inchans=3, pretrained='imagenet'):
|
||||
def seresnet152(num_classes=1000, inchans=3, pretrained='imagenet', **kwargs):
|
||||
model = SENet(SEResNetBottleneck, [3, 8, 36, 3], groups=1, reduction=16,
|
||||
dropout_p=None, inplanes=64, input_3x3=False,
|
||||
inplanes=64, input_3x3=False,
|
||||
downsample_kernel_size=1, downsample_padding=0,
|
||||
num_classes=num_classes)
|
||||
num_classes=num_classes, **kwargs)
|
||||
if pretrained:
|
||||
_load_pretrained(model, model_urls['seresnet152'], inchans)
|
||||
return model
|
||||
|
||||
|
||||
def seresnext50_32x4d(num_classes=1000, inchans=3, pretrained='imagenet'):
|
||||
model = SENet(SEResNeXtBottleneck, [3, 4, 6, 3], groups=32, reduction=16,
|
||||
dropout_p=None, inplanes=64, input_3x3=False,
|
||||
def seresnext26_32x4d(num_classes=1000, inchans=3, pretrained='imagenet', **kwargs):
|
||||
model = SENet(SEResNeXtBottleneck, [2, 2, 2, 2], groups=32, reduction=16,
|
||||
inplanes=64, input_3x3=False,
|
||||
downsample_kernel_size=1, downsample_padding=0,
|
||||
num_classes=num_classes)
|
||||
num_classes=num_classes, **kwargs)
|
||||
if pretrained:
|
||||
_load_pretrained(model, model_urls['se_resnext26_32x4d'], inchans)
|
||||
return model
|
||||
|
||||
|
||||
def seresnext50_32x4d(num_classes=1000, inchans=3, pretrained='imagenet', **kwargs):
|
||||
model = SENet(SEResNeXtBottleneck, [3, 4, 6, 3], groups=32, reduction=16,
|
||||
inplanes=64, input_3x3=False,
|
||||
downsample_kernel_size=1, downsample_padding=0,
|
||||
num_classes=num_classes, **kwargs)
|
||||
if pretrained:
|
||||
_load_pretrained(model, model_urls['seresnext50_32x4d'], inchans)
|
||||
return model
|
||||
|
||||
|
||||
def seresnext101_32x4d(num_classes=1000, inchans=3, pretrained='imagenet'):
|
||||
def seresnext101_32x4d(num_classes=1000, inchans=3, pretrained='imagenet', **kwargs):
|
||||
model = SENet(SEResNeXtBottleneck, [3, 4, 23, 3], groups=32, reduction=16,
|
||||
dropout_p=None, inplanes=64, input_3x3=False,
|
||||
inplanes=64, input_3x3=False,
|
||||
downsample_kernel_size=1, downsample_padding=0,
|
||||
num_classes=num_classes)
|
||||
num_classes=num_classes, **kwargs)
|
||||
if pretrained:
|
||||
_load_pretrained(model, model_urls['seresnext101_32x4d'], inchans)
|
||||
return model
|
||||
|
@ -24,6 +24,7 @@ class CosineLRScheduler(Scheduler):
|
||||
warmup_t=0,
|
||||
warmup_lr_init=0,
|
||||
warmup_prefix=False,
|
||||
cycle_limit=0,
|
||||
t_in_epochs=True,
|
||||
initialize=True) -> None:
|
||||
super().__init__(optimizer, param_group_field="lr", initialize=initialize)
|
||||
@ -37,6 +38,7 @@ class CosineLRScheduler(Scheduler):
|
||||
self.t_mul = t_mul
|
||||
self.lr_min = lr_min
|
||||
self.decay_rate = decay_rate
|
||||
self.cycle_limit = cycle_limit
|
||||
self.warmup_t = warmup_t
|
||||
self.warmup_lr_init = warmup_lr_init
|
||||
self.warmup_prefix = warmup_prefix
|
||||
@ -67,9 +69,13 @@ class CosineLRScheduler(Scheduler):
|
||||
lr_min = self.lr_min * gamma
|
||||
lr_max_values = [v * gamma for v in self.base_values]
|
||||
|
||||
lrs = [
|
||||
lr_min + 0.5 * (lr_max - lr_min) * (1 + math.cos(math.pi * t_curr / t_i)) for lr_max in lr_max_values
|
||||
]
|
||||
if self.cycle_limit == 0 or (self.cycle_limit > 0 and i < self.cycle_limit):
|
||||
lrs = [
|
||||
lr_min + 0.5 * (lr_max - lr_min) * (1 + math.cos(math.pi * t_curr / t_i)) for lr_max in lr_max_values
|
||||
]
|
||||
else:
|
||||
lrs = [self.lr_min for _ in self.base_values]
|
||||
|
||||
return lrs
|
||||
|
||||
def get_epoch_values(self, epoch: int):
|
||||
@ -83,3 +89,12 @@ class CosineLRScheduler(Scheduler):
|
||||
return self._get_lr(num_updates)
|
||||
else:
|
||||
return None
|
||||
|
||||
def get_cycle_length(self, cycles=0):
|
||||
if not cycles:
|
||||
cycles = self.cycle_limit
|
||||
assert cycles > 0
|
||||
if self.t_mul == 1.0:
|
||||
return self.t_initial * cycles
|
||||
else:
|
||||
return int(math.floor(-self.t_initial * (self.t_mul ** cycles - 1) / (1 - self.t_mul)))
|
||||
|
@ -97,3 +97,12 @@ class TanhLRScheduler(Scheduler):
|
||||
return self._get_lr(num_updates)
|
||||
else:
|
||||
return None
|
||||
|
||||
def get_cycle_length(self, cycles=0):
|
||||
if not cycles:
|
||||
cycles = self.cycle_limit
|
||||
assert cycles > 0
|
||||
if self.t_mul == 1.0:
|
||||
return self.t_initial * cycles
|
||||
else:
|
||||
return int(math.floor(-self.t_initial * (self.t_mul ** cycles - 1) / (1 - self.t_mul)))
|
||||
|
20
train.py
20
train.py
@ -91,7 +91,6 @@ def main():
|
||||
output_dir = get_outdir(output_base, 'train', exp_name)
|
||||
|
||||
batch_size = args.batch_size
|
||||
num_epochs = args.epochs
|
||||
torch.manual_seed(args.seed)
|
||||
|
||||
dataset_train = Dataset(
|
||||
@ -155,9 +154,7 @@ def main():
|
||||
else:
|
||||
model.cuda()
|
||||
|
||||
train_loss_fn = validate_loss_fn = torch.nn.CrossEntropyLoss()
|
||||
train_loss_fn = train_loss_fn.cuda()
|
||||
validate_loss_fn = validate_loss_fn.cuda()
|
||||
train_loss_fn = validate_loss_fn = torch.nn.CrossEntropyLoss().cuda()
|
||||
|
||||
if args.opt.lower() == 'sgd':
|
||||
optimizer = optim.SGD(
|
||||
@ -183,34 +180,39 @@ def main():
|
||||
#if optimizer_state is not None:
|
||||
# optimizer.load_state_dict(optimizer_state)
|
||||
|
||||
num_epochs = args.epochs
|
||||
if args.sched == 'cosine':
|
||||
lr_scheduler = scheduler.CosineLRScheduler(
|
||||
optimizer,
|
||||
t_initial=130,
|
||||
t_mul=1.0,
|
||||
lr_min=0,
|
||||
t_initial=args.epochs,
|
||||
t_mul=1.5,
|
||||
lr_min=1e-5,
|
||||
decay_rate=args.decay_rate,
|
||||
warmup_lr_init=1e-4,
|
||||
warmup_t=3,
|
||||
cycle_limit=3,
|
||||
t_in_epochs=True,
|
||||
)
|
||||
num_epochs = lr_scheduler.get_cycle_length() + 10
|
||||
elif args.sched == 'tanh':
|
||||
lr_scheduler = scheduler.TanhLRScheduler(
|
||||
optimizer,
|
||||
t_initial=130,
|
||||
t_initial=args.epochs,
|
||||
t_mul=1.0,
|
||||
lr_min=1e-6,
|
||||
lr_min=1e-5,
|
||||
warmup_lr_init=.001,
|
||||
warmup_t=3,
|
||||
cycle_limit=1,
|
||||
t_in_epochs=True,
|
||||
)
|
||||
num_epochs = lr_scheduler.get_cycle_length() + 10
|
||||
else:
|
||||
lr_scheduler = scheduler.StepLRScheduler(
|
||||
optimizer,
|
||||
decay_t=args.decay_epochs,
|
||||
decay_rate=args.decay_rate,
|
||||
)
|
||||
print(num_epochs)
|
||||
|
||||
saver = CheckpointSaver(checkpoint_dir=output_dir)
|
||||
best_loss = None
|
||||
|
Loading…
x
Reference in New Issue
Block a user