mirror of
https://github.com/huggingface/pytorch-image-models.git
synced 2025-06-03 15:01:08 +08:00
add tinyvit
This commit is contained in:
parent
983310d6a2
commit
170a5b6e27
@ -36,7 +36,7 @@ from .padding import get_padding, get_same_padding, pad_same
|
||||
from .patch_dropout import PatchDropout
|
||||
from .patch_embed import PatchEmbed, PatchEmbedWithSize, resample_patch_embed
|
||||
from .pool2d_same import AvgPool2dSame, create_pool2d
|
||||
from .pos_embed import resample_abs_pos_embed, resample_abs_pos_embed_nhwc
|
||||
from .pos_embed import resample_abs_pos_embed, resample_abs_pos_embed_nhwc, resample_relative_position_bias_table
|
||||
from .pos_embed_rel import RelPosMlp, RelPosBias, RelPosBiasTf, gen_relative_position_index, gen_relative_log_coords, \
|
||||
resize_rel_pos_bias_table, resize_rel_pos_bias_table_simple
|
||||
from .pos_embed_sincos import pixel_freq_bands, freq_bands, build_sincos2d_pos_embed, build_fourier_pos_embed, \
|
||||
|
@ -78,3 +78,38 @@ def resample_abs_pos_embed_nhwc(
|
||||
_logger.info(f'Resized position embedding: {posemb.shape[-3:-1]} to {new_size}.')
|
||||
|
||||
return posemb
|
||||
|
||||
|
||||
def resample_relative_position_bias_table(
|
||||
position_bias_table,
|
||||
new_size,
|
||||
interpolation: str = 'bicubic',
|
||||
antialias: bool = True,
|
||||
verbose: bool = False
|
||||
):
|
||||
"""
|
||||
Resample relative position bias table suggested in LeVit
|
||||
Adapted from: https://github.com/microsoft/Cream/blob/main/TinyViT/utils.py
|
||||
"""
|
||||
L1, nH1 = position_bias_table.size()
|
||||
L2, nH2 = new_size
|
||||
assert nH1 == nH2
|
||||
if L1 != L2:
|
||||
orig_dtype = position_bias_table.dtype
|
||||
position_bias_table = position_bias_table.float()
|
||||
# bicubic interpolate relative_position_bias_table if not match
|
||||
S1 = int(L1 ** 0.5)
|
||||
S2 = int(L2 ** 0.5)
|
||||
relative_position_bias_table_resized = F.interpolate(
|
||||
position_bias_table.permute(1, 0).view(1, nH1, S1, S1),
|
||||
size=(S2, S2),
|
||||
mode=interpolation,
|
||||
antialias=antialias)
|
||||
relative_position_bias_table_resized = \
|
||||
relative_position_bias_table_resized.view(nH2, L2).permute(1, 0)
|
||||
relative_position_bias_table_resized.to(orig_dtype)
|
||||
if not torch.jit.is_scripting() and verbose:
|
||||
_logger.info(f'Resized position bias: {L1, nH1} to {L2, nH2}.')
|
||||
return relative_position_bias_table_resized
|
||||
else:
|
||||
return position_bias_table
|
||||
|
@ -58,6 +58,7 @@ from .sknet import *
|
||||
from .swin_transformer import *
|
||||
from .swin_transformer_v2 import *
|
||||
from .swin_transformer_v2_cr import *
|
||||
from .tiny_vit import *
|
||||
from .tnt import *
|
||||
from .tresnet import *
|
||||
from .twins import *
|
||||
|
@ -15,7 +15,7 @@ import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
||||
from timm.models.layers import SqueezeExcite, SelectAdaptivePool2d, trunc_normal_, _assert
|
||||
from timm.layers import SqueezeExcite, SelectAdaptivePool2d, trunc_normal_, _assert
|
||||
from ._builder import build_model_with_cfg
|
||||
from ._manipulate import checkpoint_seq
|
||||
from ._registry import register_model, generate_default_cfgs
|
||||
|
744
timm/models/tiny_vit.py
Normal file
744
timm/models/tiny_vit.py
Normal file
@ -0,0 +1,744 @@
|
||||
""" TinyViT
|
||||
|
||||
Paper: `TinyViT: Fast Pretraining Distillation for Small Vision Transformers`
|
||||
- https://arxiv.org/abs/2207.10666
|
||||
|
||||
Adapted from official impl at https://github.com/microsoft/Cream/tree/main/TinyViT
|
||||
"""
|
||||
|
||||
__all__ = ['TinyVit']
|
||||
import math
|
||||
import itertools
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
||||
from timm.layers import DropPath, to_2tuple, trunc_normal_, resample_relative_position_bias_table
|
||||
from ._builder import build_model_with_cfg
|
||||
from ._manipulate import checkpoint_seq
|
||||
from ._registry import register_model, generate_default_cfgs
|
||||
|
||||
|
||||
class ConvNorm(torch.nn.Sequential):
|
||||
def __init__(self, in_chs, out_chs, ks=1, stride=1, pad=0, dilation=1, groups=1, bn_weight_init=1):
|
||||
super().__init__()
|
||||
self.conv = nn.Conv2d(in_chs, out_chs, ks, stride, pad, dilation, groups, bias=False)
|
||||
self.bn = nn.BatchNorm2d(out_chs)
|
||||
torch.nn.init.constant_(self.bn.weight, bn_weight_init)
|
||||
torch.nn.init.constant_(self.bn.bias, 0)
|
||||
|
||||
@torch.no_grad()
|
||||
def fuse(self):
|
||||
c, bn = self.conv, self.bn
|
||||
w = bn.weight / (bn.running_var + bn.eps)**0.5
|
||||
w = c.weight * w[:, None, None, None]
|
||||
b = bn.bias - bn.running_mean * bn.weight / \
|
||||
(bn.running_var + bn.eps)**0.5
|
||||
m = torch.nn.Conv2d(
|
||||
w.size(1) * self.conv.groups, w.size(0), w.shape[2:],
|
||||
stride=self.conv.stride, padding=self.conv.padding, dilation=self.conv.dilation, groups=self.conv.groups)
|
||||
m.weight.data.copy_(w)
|
||||
m.bias.data.copy_(b)
|
||||
return m
|
||||
|
||||
|
||||
class PatchEmbed(nn.Module):
|
||||
def __init__(self, in_chans, embed_dim, resolution, activation):
|
||||
super().__init__()
|
||||
img_size = to_2tuple(resolution)
|
||||
self.patches_resolution = (math.ceil(img_size[0] / 4), math.ceil(img_size[1] / 4))
|
||||
self.num_patches = self.patches_resolution[0] * self.patches_resolution[1]
|
||||
self.in_chans = in_chans
|
||||
self.embed_dim = embed_dim
|
||||
self.stride = 4
|
||||
n = embed_dim
|
||||
self.conv1 = ConvNorm(self.in_chans, n // 2, 3, 2, 1)
|
||||
self.act = activation()
|
||||
self.conv2 = ConvNorm(n // 2, n, 3, 2, 1)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv1(x)
|
||||
x = self.act(x)
|
||||
x = self.conv2(x)
|
||||
return x
|
||||
|
||||
|
||||
class MBConv(nn.Module):
|
||||
def __init__(self, in_chans, out_chans, expand_ratio, activation, drop_path):
|
||||
super().__init__()
|
||||
self.in_chans = in_chans
|
||||
self.hidden_chans = int(in_chans * expand_ratio)
|
||||
self.out_chans = out_chans
|
||||
self.conv1 = ConvNorm(in_chans, self.hidden_chans, ks=1)
|
||||
self.act1 = activation()
|
||||
self.conv2 = ConvNorm(self.hidden_chans, self.hidden_chans, ks=3, stride=1, pad=1, groups=self.hidden_chans)
|
||||
self.act2 = activation()
|
||||
self.conv3 = ConvNorm(self.hidden_chans, out_chans, ks=1, bn_weight_init=0.0)
|
||||
self.act3 = activation()
|
||||
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
||||
|
||||
def forward(self, x):
|
||||
shortcut = x
|
||||
x = self.conv1(x)
|
||||
x = self.act1(x)
|
||||
x = self.conv2(x)
|
||||
x = self.act2(x)
|
||||
x = self.conv3(x)
|
||||
x = self.drop_path(x)
|
||||
x += shortcut
|
||||
x = self.act3(x)
|
||||
return x
|
||||
|
||||
|
||||
class PatchMerging(nn.Module):
|
||||
def __init__(self, input_resolution, dim, out_dim, activation):
|
||||
super().__init__()
|
||||
self.input_resolution = input_resolution
|
||||
self.dim = dim
|
||||
self.out_dim = out_dim
|
||||
self.act = activation()
|
||||
self.conv1 = ConvNorm(dim, out_dim, 1, 1, 0)
|
||||
self.conv2 = ConvNorm(out_dim, out_dim, 3, 2, 1, groups=out_dim)
|
||||
self.conv3 = ConvNorm(out_dim, out_dim, 1, 1, 0)
|
||||
self.output_resolution = (math.ceil(input_resolution[0] / 2), math.ceil(input_resolution[1] / 2))
|
||||
|
||||
def forward(self, x):
|
||||
if x.ndim == 3:
|
||||
H, W = self.input_resolution
|
||||
B = len(x)
|
||||
# (B, C, H, W)
|
||||
x = x.view(B, H, W, -1).permute(0, 3, 1, 2)
|
||||
x = self.conv1(x)
|
||||
x = self.act(x)
|
||||
x = self.conv2(x)
|
||||
x = self.act(x)
|
||||
x = self.conv3(x)
|
||||
x = x.flatten(2).transpose(1, 2)
|
||||
return x
|
||||
|
||||
|
||||
class ConvLayer(nn.Module):
|
||||
def __init__(self, dim, input_resolution, depth, activation, drop_path=0.,
|
||||
downsample=None, conv_expand_ratio=4.):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.input_resolution = input_resolution
|
||||
self.depth = depth
|
||||
# build blocks
|
||||
self.blocks = nn.Sequential(*[
|
||||
MBConv(dim, dim, conv_expand_ratio, activation,
|
||||
drop_path[i] if isinstance(drop_path, list) else drop_path,
|
||||
)
|
||||
for i in range(depth)])
|
||||
|
||||
def forward(self, x):
|
||||
x = self.blocks(x)
|
||||
return x
|
||||
|
||||
|
||||
class Mlp(nn.Module):
|
||||
def __init__(self, in_features, hidden_features=None,
|
||||
out_features=None, act_layer=nn.GELU, drop=0.):
|
||||
super().__init__()
|
||||
out_features = out_features or in_features
|
||||
hidden_features = hidden_features or in_features
|
||||
self.norm = nn.LayerNorm(in_features)
|
||||
self.fc1 = nn.Linear(in_features, hidden_features)
|
||||
self.fc2 = nn.Linear(hidden_features, out_features)
|
||||
self.act = act_layer()
|
||||
self.drop = nn.Dropout(drop)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.norm(x)
|
||||
x = self.fc1(x)
|
||||
x = self.act(x)
|
||||
x = self.drop(x)
|
||||
x = self.fc2(x)
|
||||
x = self.drop(x)
|
||||
return x
|
||||
|
||||
|
||||
class ClassifierHead(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
num_classes=1000
|
||||
):
|
||||
super(ClassifierHead, self).__init__()
|
||||
self.norm_head = nn.LayerNorm(in_channels)
|
||||
self.fc = nn.Linear(in_channels, num_classes) if num_classes > 0 else nn.Identity()
|
||||
|
||||
def forward(self, x):
|
||||
x = x.mean(1)
|
||||
x = self.norm_head(x)
|
||||
x = self.fc(x)
|
||||
return x
|
||||
|
||||
|
||||
class Attention(torch.nn.Module):
|
||||
def __init__(self, dim, key_dim, num_heads=8, attn_ratio=4, resolution=(14, 14)):
|
||||
super().__init__()
|
||||
assert isinstance(resolution, tuple) and len(resolution) == 2
|
||||
self.num_heads = num_heads
|
||||
self.scale = key_dim ** -0.5
|
||||
self.key_dim = key_dim
|
||||
self.nh_kd = nh_kd = key_dim * num_heads
|
||||
self.d = int(attn_ratio * key_dim)
|
||||
self.dh = int(attn_ratio * key_dim) * num_heads
|
||||
self.attn_ratio = attn_ratio
|
||||
h = self.dh + nh_kd * 2
|
||||
|
||||
self.norm = nn.LayerNorm(dim)
|
||||
self.qkv = nn.Linear(dim, h)
|
||||
self.proj = nn.Linear(self.dh, dim)
|
||||
|
||||
points = list(itertools.product(range(resolution[0]), range(resolution[1])))
|
||||
N = len(points)
|
||||
attention_offsets = {}
|
||||
idxs = []
|
||||
for p1 in points:
|
||||
for p2 in points:
|
||||
offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1]))
|
||||
if offset not in attention_offsets:
|
||||
attention_offsets[offset] = len(attention_offsets)
|
||||
idxs.append(attention_offsets[offset])
|
||||
self.attention_biases = torch.nn.Parameter(torch.zeros(num_heads, len(attention_offsets)))
|
||||
self.register_buffer('attention_bias_idxs', torch.LongTensor(idxs).view(N, N), persistent=False)
|
||||
|
||||
@torch.no_grad()
|
||||
def train(self, mode=True):
|
||||
super().train(mode)
|
||||
if mode and self.attention_bias_cache:
|
||||
self.attention_bias_cache = {} # clear ab cache
|
||||
|
||||
def get_attention_biases(self, device: torch.device) -> torch.Tensor:
|
||||
if torch.jit.is_tracing() or self.training:
|
||||
return self.attention_biases[:, self.attention_bias_idxs]
|
||||
else:
|
||||
device_key = str(device)
|
||||
if device_key not in self.attention_bias_cache:
|
||||
self.attention_bias_cache[device_key] = self.attention_biases[:, self.attention_bias_idxs]
|
||||
return self.attention_bias_cache[device_key]
|
||||
|
||||
def forward(self, x):
|
||||
attn_bias = self.get_attention_biases(x.device)
|
||||
B, N, _ = x.shape
|
||||
# Normalization
|
||||
x = self.norm(x)
|
||||
qkv = self.qkv(x)
|
||||
# (B, N, num_heads, d)
|
||||
q, k, v = qkv.view(B, N, self.num_heads, -1).split([self.key_dim, self.key_dim, self.d], dim=3)
|
||||
# (B, num_heads, N, d)
|
||||
q = q.permute(0, 2, 1, 3)
|
||||
k = k.permute(0, 2, 1, 3)
|
||||
v = v.permute(0, 2, 1, 3)
|
||||
|
||||
q = q * self.scale
|
||||
attn = q @ k.transpose(-2, -1)
|
||||
attn = attn + attn_bias
|
||||
attn = attn.softmax(dim=-1)
|
||||
x = (attn @ v).transpose(1, 2)
|
||||
x = x.reshape(B, N, self.dh)
|
||||
x = self.proj(x)
|
||||
return x
|
||||
|
||||
|
||||
class TinyVitBlock(nn.Module):
|
||||
""" TinyViT Block.
|
||||
|
||||
Args:
|
||||
dim (int): Number of input channels.
|
||||
input_resolution (tuple[int, int]): Input resulotion.
|
||||
num_heads (int): Number of attention heads.
|
||||
window_size (int): Window size.
|
||||
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
||||
drop (float, optional): Dropout rate. Default: 0.0
|
||||
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
||||
local_conv_size (int): the kernel size of the convolution between
|
||||
Attention and MLP. Default: 3
|
||||
activation: the activation function. Default: nn.GELU
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
input_resolution,
|
||||
num_heads,
|
||||
window_size=7,
|
||||
mlp_ratio=4.,
|
||||
drop=0.,
|
||||
drop_path=0.,
|
||||
local_conv_size=3,
|
||||
activation=nn.GELU
|
||||
):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.input_resolution = input_resolution
|
||||
self.num_heads = num_heads
|
||||
assert window_size > 0, 'window_size must be greater than 0'
|
||||
self.window_size = window_size
|
||||
self.mlp_ratio = mlp_ratio
|
||||
|
||||
self.drop_path = DropPath(
|
||||
drop_path) if drop_path > 0. else nn.Identity()
|
||||
|
||||
assert dim % num_heads == 0, 'dim must be divisible by num_heads'
|
||||
head_dim = dim // num_heads
|
||||
|
||||
window_resolution = (window_size, window_size)
|
||||
self.attn = Attention(dim, head_dim, num_heads,
|
||||
attn_ratio=1, resolution=window_resolution)
|
||||
|
||||
mlp_hidden_dim = int(dim * mlp_ratio)
|
||||
mlp_activation = activation
|
||||
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,
|
||||
act_layer=mlp_activation, drop=drop)
|
||||
|
||||
pad = local_conv_size // 2
|
||||
self.local_conv = ConvNorm(
|
||||
dim, dim, ks=local_conv_size, stride=1, pad=pad, groups=dim)
|
||||
|
||||
def forward(self, x):
|
||||
H, W = self.input_resolution
|
||||
B, L, C = x.shape
|
||||
assert L == H * W, "input feature has wrong size"
|
||||
res_x = x
|
||||
if H == self.window_size and W == self.window_size:
|
||||
x = self.attn(x)
|
||||
else:
|
||||
x = x.view(B, H, W, C)
|
||||
pad_b = (self.window_size - H %
|
||||
self.window_size) % self.window_size
|
||||
pad_r = (self.window_size - W %
|
||||
self.window_size) % self.window_size
|
||||
padding = pad_b > 0 or pad_r > 0
|
||||
|
||||
if padding:
|
||||
x = F.pad(x, (0, 0, 0, pad_r, 0, pad_b))
|
||||
|
||||
pH, pW = H + pad_b, W + pad_r
|
||||
nH = pH // self.window_size
|
||||
nW = pW // self.window_size
|
||||
# window partition
|
||||
x = x.view(B, nH, self.window_size, nW, self.window_size, C).transpose(2, 3).reshape(
|
||||
B * nH * nW, self.window_size * self.window_size, C
|
||||
)
|
||||
x = self.attn(x)
|
||||
# window reverse
|
||||
x = x.view(B, nH, nW, self.window_size, self.window_size,
|
||||
C).transpose(2, 3).reshape(B, pH, pW, C)
|
||||
|
||||
if padding:
|
||||
x = x[:, :H, :W].contiguous()
|
||||
|
||||
x = x.view(B, L, C)
|
||||
|
||||
x = res_x + self.drop_path(x)
|
||||
|
||||
x = x.transpose(1, 2).reshape(B, C, H, W)
|
||||
x = self.local_conv(x)
|
||||
x = x.view(B, C, L).transpose(1, 2)
|
||||
|
||||
x = x + self.drop_path(self.mlp(x))
|
||||
return x
|
||||
|
||||
def extra_repr(self) -> str:
|
||||
return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
|
||||
f"window_size={self.window_size}, mlp_ratio={self.mlp_ratio}"
|
||||
|
||||
|
||||
class TinyVitStage(nn.Module):
|
||||
""" A basic TinyViT layer for one stage.
|
||||
|
||||
Args:
|
||||
dim (int): Number of input channels.
|
||||
input_resolution (tuple[int]): Input resolution.
|
||||
depth (int): Number of blocks.
|
||||
num_heads (int): Number of attention heads.
|
||||
window_size (int): Local window size.
|
||||
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
||||
drop (float, optional): Dropout rate. Default: 0.0
|
||||
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
||||
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
||||
local_conv_size: the kernel size of the depthwise convolution between attention and MLP. Default: 3
|
||||
activation: the activation function. Default: nn.GELU
|
||||
out_dim: the output dimension of the layer. Default: dim
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_dim,
|
||||
input_resolution,
|
||||
depth,
|
||||
num_heads,
|
||||
window_size,
|
||||
mlp_ratio=4.,
|
||||
drop=0.,
|
||||
drop_path=0.,
|
||||
downsample=None,
|
||||
local_conv_size=3,
|
||||
activation=nn.GELU,
|
||||
out_dim=None,
|
||||
):
|
||||
|
||||
super().__init__()
|
||||
self.input_dim = input_dim
|
||||
self.out_dim = out_dim
|
||||
self.input_resolution = input_resolution
|
||||
self.depth = depth
|
||||
|
||||
# patch merging layer
|
||||
if downsample is not None:
|
||||
self.downsample = downsample(
|
||||
input_resolution, dim=input_dim, out_dim=self.out_dim, activation=activation)
|
||||
input_resolution = self.downsample.output_resolution
|
||||
else:
|
||||
self.downsample = nn.Identity()
|
||||
self.out_dim = self.input_dim
|
||||
|
||||
# build blocks
|
||||
self.blocks = nn.Sequential(*[
|
||||
TinyVitBlock(dim=self.out_dim, input_resolution=input_resolution,
|
||||
num_heads=num_heads, window_size=window_size,
|
||||
mlp_ratio=mlp_ratio,
|
||||
drop=drop,
|
||||
drop_path=drop_path[i] if isinstance(
|
||||
drop_path, list) else drop_path,
|
||||
local_conv_size=local_conv_size,
|
||||
activation=activation,
|
||||
)
|
||||
for i in range(depth)])
|
||||
|
||||
def forward(self, x):
|
||||
x = self.downsample(x)
|
||||
x = self.blocks(x)
|
||||
return x
|
||||
|
||||
def extra_repr(self) -> str:
|
||||
return f"dim={self.out_dim}, input_resolution={self.input_resolution}, depth={self.depth}"
|
||||
|
||||
|
||||
class TinyVit(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
img_size=224,
|
||||
in_chans=3,
|
||||
num_classes=1000,
|
||||
embed_dims=[96, 192, 384, 768],
|
||||
depths=[2, 2, 6, 2],
|
||||
num_heads=[3, 6, 12, 24],
|
||||
window_sizes=[7, 7, 14, 7],
|
||||
mlp_ratio=4.,
|
||||
drop_rate=0.,
|
||||
drop_path_rate=0.1,
|
||||
use_checkpoint=False,
|
||||
mbconv_expand_ratio=4.0,
|
||||
local_conv_size=3,
|
||||
layer_lr_decay=1.0
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.num_classes = num_classes
|
||||
self.depths = depths
|
||||
self.num_stages = len(depths)
|
||||
self.mlp_ratio = mlp_ratio
|
||||
self.grad_checkpointing = use_checkpoint
|
||||
|
||||
activation = nn.GELU
|
||||
|
||||
self.patch_embed = PatchEmbed(in_chans=in_chans,
|
||||
embed_dim=embed_dims[0],
|
||||
resolution=img_size,
|
||||
activation=activation)
|
||||
|
||||
patches_resolution = self.patch_embed.patches_resolution
|
||||
self.patches_resolution = patches_resolution
|
||||
|
||||
# stochastic depth rate rule
|
||||
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
|
||||
|
||||
# build stages
|
||||
stages = nn.ModuleList()
|
||||
input_resolution = patches_resolution
|
||||
stride = self.patch_embed.stride
|
||||
self.feature_info = []
|
||||
for stage_idx in range(self.num_stages):
|
||||
if stage_idx == 0:
|
||||
out_dim = embed_dims[0]
|
||||
stage = ConvLayer(
|
||||
dim=embed_dims[0],
|
||||
input_resolution=input_resolution,
|
||||
depth=depths[0],
|
||||
activation=activation,
|
||||
drop_path=dpr[:depths[0]],
|
||||
downsample=None,
|
||||
conv_expand_ratio=mbconv_expand_ratio,
|
||||
)
|
||||
else:
|
||||
out_dim = embed_dims[stage_idx]
|
||||
drop_path_rate = dpr[sum(depths[:stage_idx]):sum(depths[:stage_idx + 1])]
|
||||
stage = TinyVitStage(
|
||||
num_heads=num_heads[stage_idx],
|
||||
window_size=window_sizes[stage_idx],
|
||||
mlp_ratio=self.mlp_ratio,
|
||||
drop=drop_rate,
|
||||
local_conv_size=local_conv_size,
|
||||
input_dim=embed_dims[stage_idx - 1],
|
||||
input_resolution=input_resolution,
|
||||
depth=depths[stage_idx],
|
||||
drop_path=drop_path_rate,
|
||||
downsample=PatchMerging,
|
||||
out_dim=out_dim,
|
||||
activation=activation,
|
||||
)
|
||||
input_resolution = (math.ceil(input_resolution[0] / 2), math.ceil(input_resolution[1] / 2))
|
||||
stride *= 2
|
||||
stages.append(stage)
|
||||
self.feature_info += [dict(num_chs=out_dim, reduction=stride, module=f'stages.{stage_idx}')]
|
||||
self.stages = nn.Sequential(*stages)
|
||||
|
||||
# Classifier head
|
||||
self.num_features = embed_dims[-1]
|
||||
self.head = ClassifierHead(self.num_features, num_classes=num_classes)
|
||||
|
||||
# init weights
|
||||
self.apply(self._init_weights)
|
||||
self.set_layer_lr_decay(layer_lr_decay)
|
||||
|
||||
@torch.jit.ignore
|
||||
def set_layer_lr_decay(self, layer_lr_decay):
|
||||
decay_rate = layer_lr_decay
|
||||
|
||||
# stages -> blocks (depth)
|
||||
depth = sum(self.depths)
|
||||
lr_scales = [decay_rate ** (depth - i - 1) for i in range(depth)]
|
||||
|
||||
def _set_lr_scale(m, scale):
|
||||
for p in m.parameters():
|
||||
p.lr_scale = scale
|
||||
|
||||
self.patch_embed.apply(lambda x: _set_lr_scale(x, lr_scales[0]))
|
||||
i = 0
|
||||
for stage in self.stages:
|
||||
if hasattr(stage, 'downsample') and stage.downsample is not None:
|
||||
stage.downsample.apply(
|
||||
lambda x: _set_lr_scale(x, lr_scales[i]))
|
||||
for block in stage.blocks:
|
||||
block.apply(lambda x: _set_lr_scale(x, lr_scales[i]))
|
||||
i += 1
|
||||
assert i == depth
|
||||
self.head.apply(lambda x: _set_lr_scale(x, lr_scales[-1]))
|
||||
|
||||
for k, p in self.named_parameters():
|
||||
p.param_name = k
|
||||
|
||||
def _check_lr_scale(m):
|
||||
for p in m.parameters():
|
||||
assert hasattr(p, 'lr_scale'), p.param_name
|
||||
|
||||
self.apply(_check_lr_scale)
|
||||
|
||||
def _init_weights(self, m):
|
||||
if isinstance(m, nn.Linear):
|
||||
trunc_normal_(m.weight, std=.02)
|
||||
if isinstance(m, nn.Linear) and m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
elif isinstance(m, nn.LayerNorm):
|
||||
nn.init.constant_(m.bias, 0)
|
||||
nn.init.constant_(m.weight, 1.0)
|
||||
|
||||
@torch.jit.ignore
|
||||
def no_weight_decay_keywords(self):
|
||||
return {'attention_biases'}
|
||||
|
||||
@torch.jit.ignore
|
||||
def group_matcher(self, coarse=False):
|
||||
matcher = dict(
|
||||
stem=r'^patch_embed',
|
||||
blocks=[(r'^stages\.(\d+)', None)]
|
||||
)
|
||||
return matcher
|
||||
|
||||
@torch.jit.ignore
|
||||
def set_grad_checkpointing(self, enable=True):
|
||||
self.grad_checkpointing = enable
|
||||
|
||||
@torch.jit.ignore
|
||||
def get_classifier(self):
|
||||
return self.head
|
||||
|
||||
def reset_classifier(self, num_classes, **kwargs):
|
||||
self.num_classes = num_classes
|
||||
self.head = ClassifierHead(self.num_features, num_classes=num_classes)
|
||||
|
||||
def forward_features(self, x):
|
||||
x = self.patch_embed(x)
|
||||
if self.grad_checkpointing and not torch.jit.is_scripting():
|
||||
x = checkpoint_seq(self.stages, x)
|
||||
else:
|
||||
x = self.stages(x)
|
||||
return x
|
||||
|
||||
def forward_head(self, x):
|
||||
x = self.head(x)
|
||||
return x
|
||||
|
||||
def forward(self, x):
|
||||
x = self.forward_features(x)
|
||||
x = self.forward_head(x)
|
||||
return x
|
||||
|
||||
|
||||
def checkpoint_filter_fn(state_dict, model):
|
||||
# TODO: temporary use for testing, need change after weight convert
|
||||
if 'model' in state_dict.keys():
|
||||
state_dict = state_dict['model']
|
||||
targe_sd = model.state_dict()
|
||||
target_keys = list(targe_sd.keys())
|
||||
out_dict = {}
|
||||
i = 0
|
||||
for k, v in state_dict.items():
|
||||
if not k.endswith('attention_bias_idxs'):
|
||||
if 'attention_biases' in k:
|
||||
# dynamic window size by resampling relative_position_bias_table
|
||||
# TODO: whether move this func into model for dynamic input resolution? (high risk)
|
||||
v = resample_relative_position_bias_table(v, targe_sd[target_keys[i]].shape)
|
||||
out_dict[target_keys[i]] = v
|
||||
i += 1
|
||||
return out_dict
|
||||
|
||||
|
||||
def _cfg(url='', **kwargs):
|
||||
return {
|
||||
'url': url,
|
||||
'num_classes': 1000,
|
||||
'mean': IMAGENET_DEFAULT_MEAN,
|
||||
'std': IMAGENET_DEFAULT_STD,
|
||||
'first_conv': 'patch_embed.conv1.conv',
|
||||
'classifier': 'head.fc',
|
||||
'fixed_input_size': True,
|
||||
'pool_size': None,
|
||||
**kwargs,
|
||||
}
|
||||
|
||||
|
||||
default_cfgs = generate_default_cfgs({
|
||||
'tiny_vit_5m_224.dist_in22k': _cfg(
|
||||
url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_5m_22k_distill.pth',
|
||||
num_classes=21841
|
||||
),
|
||||
'tiny_vit_5m_224.dist_in22k_ft_in1k': _cfg(
|
||||
url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_5m_22kto1k_distill.pth'
|
||||
),
|
||||
'tiny_vit_5m_224.in1k': _cfg(
|
||||
url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_5m_1k.pth'
|
||||
),
|
||||
'tiny_vit_11m_224.dist_in22k': _cfg(
|
||||
url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_11m_22k_distill.pth',
|
||||
num_classes=21841
|
||||
),
|
||||
'tiny_vit_11m_224.dist_in22k_ft_in1k': _cfg(
|
||||
url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_11m_22kto1k_distill.pth'
|
||||
),
|
||||
'tiny_vit_11m_224.in1k': _cfg(
|
||||
url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_11m_1k.pth'
|
||||
),
|
||||
'tiny_vit_21m_224.dist_in22k': _cfg(
|
||||
url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_21m_22k_distill.pth',
|
||||
num_classes=21841
|
||||
),
|
||||
'tiny_vit_21m_224.dist_in22k_ft_in1k': _cfg(
|
||||
url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_21m_22kto1k_distill.pth'
|
||||
),
|
||||
'tiny_vit_21m_224.in1k': _cfg(
|
||||
url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_21m_1k.pth'
|
||||
),
|
||||
'tiny_vit_21m_384.dist_in22k_ft_in1k': _cfg(
|
||||
url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_21m_22kto1k_384_distill.pth'
|
||||
),
|
||||
'tiny_vit_21m_512.dist_in22k_ft_in1k': _cfg(
|
||||
url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_21m_22kto1k_512_distill.pth'
|
||||
),
|
||||
})
|
||||
|
||||
|
||||
def _create_tiny_vit(variant, pretrained=False, **kwargs):
|
||||
out_indices = kwargs.pop('out_indices', (0, 1, 2, 3))
|
||||
model = build_model_with_cfg(
|
||||
TinyVit,
|
||||
variant,
|
||||
pretrained,
|
||||
feature_cfg=dict(flatten_sequential=True, out_indices=out_indices),
|
||||
pretrained_filter_fn=checkpoint_filter_fn,
|
||||
**kwargs
|
||||
)
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def tiny_vit_5m_224(pretrained=False, **kwargs):
|
||||
model_kwargs = dict(
|
||||
embed_dims=[64, 128, 160, 320],
|
||||
depths=[2, 2, 6, 2],
|
||||
num_heads=[2, 4, 5, 10],
|
||||
window_sizes=[7, 7, 14, 7],
|
||||
drop_path_rate=0.0,
|
||||
)
|
||||
model_kwargs.update(kwargs)
|
||||
return _create_tiny_vit('tiny_vit_5m_224', pretrained, **model_kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def tiny_vit_11m_224(pretrained=False, **kwargs):
|
||||
model_kwargs = dict(
|
||||
embed_dims=[64, 128, 256, 448],
|
||||
depths=[2, 2, 6, 2],
|
||||
num_heads=[2, 4, 8, 14],
|
||||
window_sizes=[7, 7, 14, 7],
|
||||
drop_path_rate=0.1,
|
||||
)
|
||||
model_kwargs.update(kwargs)
|
||||
return _create_tiny_vit('tiny_vit_11m_224', pretrained, **model_kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def tiny_vit_21m_224(pretrained=False, **kwargs):
|
||||
model_kwargs = dict(
|
||||
embed_dims=[96, 192, 384, 576],
|
||||
depths=[2, 2, 6, 2],
|
||||
num_heads=[3, 6, 12, 18],
|
||||
window_sizes=[7, 7, 14, 7],
|
||||
drop_path_rate=0.2,
|
||||
)
|
||||
model_kwargs.update(kwargs)
|
||||
return _create_tiny_vit('tiny_vit_21m_224', pretrained, **model_kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def tiny_vit_21m_384(pretrained=False, **kwargs):
|
||||
model_kwargs = dict(
|
||||
img_size=384,
|
||||
embed_dims=[96, 192, 384, 576],
|
||||
depths=[2, 2, 6, 2],
|
||||
num_heads=[3, 6, 12, 18],
|
||||
window_sizes=[12, 12, 24, 12],
|
||||
drop_path_rate=0.1,
|
||||
)
|
||||
model_kwargs.update(kwargs)
|
||||
return _create_tiny_vit('tiny_vit_21m_384', pretrained, **model_kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def tiny_vit_21m_512(pretrained=False, **kwargs):
|
||||
model_kwargs = dict(
|
||||
img_size=512,
|
||||
embed_dims=[96, 192, 384, 576],
|
||||
depths=[2, 2, 6, 2],
|
||||
num_heads=[3, 6, 12, 18],
|
||||
window_sizes=[16, 16, 32, 16],
|
||||
drop_path_rate=0.1,
|
||||
)
|
||||
model_kwargs.update(kwargs)
|
||||
return _create_tiny_vit('tiny_vit_21m_512', pretrained, **model_kwargs)
|
Loading…
x
Reference in New Issue
Block a user