Add fused_attn flag to HieraDet attn block
parent
691bb54443
commit
1bd92bca0e
|
@ -9,7 +9,7 @@ from torch.jit import Final
|
|||
|
||||
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
||||
from timm.layers import PatchEmbed, Mlp, DropPath, ClNormMlpClassifierHead, PatchDropout, \
|
||||
get_norm_layer, get_act_layer, init_weight_jax, init_weight_vit, to_2tuple
|
||||
get_norm_layer, get_act_layer, init_weight_jax, init_weight_vit, to_2tuple, use_fused_attn
|
||||
|
||||
from ._builder import build_model_with_cfg
|
||||
from ._features import feature_take_indices
|
||||
|
@ -58,6 +58,8 @@ def _calc_pad(H: int, W: int, window_size: Tuple[int, int]) -> Tuple[int, int, i
|
|||
|
||||
|
||||
class MultiScaleAttention(nn.Module):
|
||||
fused_attn: torch.jit.Final[bool]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
|
@ -66,13 +68,12 @@ class MultiScaleAttention(nn.Module):
|
|||
q_pool: nn.Module = None,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.dim = dim
|
||||
self.dim_out = dim_out
|
||||
|
||||
self.num_heads = num_heads
|
||||
head_dim = dim_out // num_heads
|
||||
self.scale = head_dim**-0.5
|
||||
self.scale = head_dim ** -0.5
|
||||
self.fused_attn = use_fused_attn()
|
||||
|
||||
self.q_pool = q_pool
|
||||
self.qkv = nn.Linear(dim, dim_out * 3)
|
||||
|
@ -95,11 +96,17 @@ class MultiScaleAttention(nn.Module):
|
|||
q = q.reshape(B, H * W, self.num_heads, -1)
|
||||
|
||||
# Torch's SDPA expects [B, nheads, H*W, C] so we transpose
|
||||
x = F.scaled_dot_product_attention(
|
||||
q.transpose(1, 2),
|
||||
k.transpose(1, 2),
|
||||
v.transpose(1, 2),
|
||||
)
|
||||
q = q.transpose(1, 2)
|
||||
k = k.transpose(1, 2)
|
||||
v = v.transpose(1, 2)
|
||||
if self.fused_attn:
|
||||
x = F.scaled_dot_product_attention(q, k, v)
|
||||
else:
|
||||
q = q * self.scale
|
||||
attn = q @ k.transpose(-1, -2)
|
||||
attn = attn.softmax(dim=-1)
|
||||
x = attn @ v
|
||||
|
||||
# Transpose back
|
||||
x = x.transpose(1, 2).reshape(B, H, W, -1)
|
||||
|
||||
|
|
Loading…
Reference in New Issue