Merge pull request #2217 from dsuess/2216_fix_script_on_features_fx

Fix jit.script breaking with features_fx
This commit is contained in:
Ross Wightman 2024-06-28 16:13:02 -07:00 committed by GitHub
commit 20fe56bd90
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 36 additions and 0 deletions

View File

@ -631,3 +631,35 @@ if 'GITHUB_ACTIONS' not in os.environ:
assert outputs.shape[0] == batch_size
assert not torch.isnan(outputs).any(), 'Output included NaNs'
@pytest.mark.timeout(120)
@pytest.mark.parametrize('model_name', ["regnetx_002"])
@pytest.mark.parametrize('batch_size', [1])
def test_model_forward_torchscript_with_features_fx(model_name, batch_size):
"""Create a model with feature extraction based on fx, script it, and run
a single forward pass"""
if not has_fx_feature_extraction:
pytest.skip("Can't test FX. Torch >= 1.10 and Torchvision >= 0.11 are required.")
allowed_models = list_models(
exclude_filters=EXCLUDE_FILTERS + EXCLUDE_JIT_FILTERS + EXCLUDE_FX_JIT_FILTERS,
name_matches_cfg=True
)
assert model_name in allowed_models, f"{model_name=} not supported for this test"
input_size = _get_input_size(model_name=model_name, target=TARGET_JIT_SIZE)
assert max(input_size) <= MAX_JIT_SIZE, "Fixed input size model > limit. Pick a different model to run this test"
with set_scriptable(True):
model = create_model(model_name, pretrained=False, features_only=True, feature_cfg={"feature_cls": "fx"})
model.eval()
model = torch.jit.script(model)
with torch.no_grad():
outputs = model(torch.randn((batch_size, *input_size)))
assert isinstance(outputs, list)
for tensor in outputs:
assert tensor.shape[0] == batch_size
assert not torch.isnan(tensor).any(), 'Output included NaNs'

View File

@ -116,6 +116,8 @@ def create_feature_extractor(model: nn.Module, return_nodes: Union[Dict[str, str
class FeatureGraphNet(nn.Module):
""" A FX Graph based feature extractor that works with the model feature_info metadata
"""
return_dict: torch.jit.Final[bool]
def __init__(
self,
model: nn.Module,
@ -155,6 +157,8 @@ class GraphExtractNet(nn.Module):
squeeze_out: if only one output, and output in list format, flatten to single tensor
return_dict: return as dictionary from extractor with node names as keys, ignores squeeze_out arg
"""
return_dict: torch.jit.Final[bool]
def __init__(
self,
model: nn.Module,