Merge pull request #525 from amaarora/spp
Add `ActivationStatsHook` to allow extracting activation stats for Signal Propogation Plotspull/429/head
commit
2319cbbff2
|
@ -3,7 +3,8 @@
|
|||
Hacked together by / Copyright 2020 Ross Wightman
|
||||
"""
|
||||
from .model_ema import ModelEma
|
||||
|
||||
import torch
|
||||
import fnmatch
|
||||
|
||||
def unwrap_model(model):
|
||||
if isinstance(model, ModelEma):
|
||||
|
@ -14,3 +15,78 @@ def unwrap_model(model):
|
|||
|
||||
def get_state_dict(model, unwrap_fn=unwrap_model):
|
||||
return unwrap_fn(model).state_dict()
|
||||
|
||||
|
||||
def avg_sq_ch_mean(model, input, output):
|
||||
"calculate average channel square mean of output activations"
|
||||
return torch.mean(output.mean(axis=[0,2,3])**2).item()
|
||||
|
||||
|
||||
def avg_ch_var(model, input, output):
|
||||
"calculate average channel variance of output activations"
|
||||
return torch.mean(output.var(axis=[0,2,3])).item()\
|
||||
|
||||
|
||||
def avg_ch_var_residual(model, input, output):
|
||||
"calculate average channel variance of output activations"
|
||||
return torch.mean(output.var(axis=[0,2,3])).item()
|
||||
|
||||
|
||||
class ActivationStatsHook:
|
||||
"""Iterates through each of `model`'s modules and matches modules using unix pattern
|
||||
matching based on `hook_fn_locs` and registers `hook_fn` to the module if there is
|
||||
a match.
|
||||
|
||||
Arguments:
|
||||
model (nn.Module): model from which we will extract the activation stats
|
||||
hook_fn_locs (List[str]): List of `hook_fn` locations based on Unix type string
|
||||
matching with the name of model's modules.
|
||||
hook_fns (List[Callable]): List of hook functions to be registered at every
|
||||
module in `layer_names`.
|
||||
|
||||
Inspiration from https://docs.fast.ai/callback.hook.html.
|
||||
|
||||
Refer to https://gist.github.com/amaarora/6e56942fcb46e67ba203f3009b30d950 for an example
|
||||
on how to plot Signal Propogation Plots using `ActivationStatsHook`.
|
||||
"""
|
||||
|
||||
def __init__(self, model, hook_fn_locs, hook_fns):
|
||||
self.model = model
|
||||
self.hook_fn_locs = hook_fn_locs
|
||||
self.hook_fns = hook_fns
|
||||
if len(hook_fn_locs) != len(hook_fns):
|
||||
raise ValueError("Please provide `hook_fns` for each `hook_fn_locs`, \
|
||||
their lengths are different.")
|
||||
self.stats = dict((hook_fn.__name__, []) for hook_fn in hook_fns)
|
||||
for hook_fn_loc, hook_fn in zip(hook_fn_locs, hook_fns):
|
||||
self.register_hook(hook_fn_loc, hook_fn)
|
||||
|
||||
def _create_hook(self, hook_fn):
|
||||
def append_activation_stats(module, input, output):
|
||||
out = hook_fn(module, input, output)
|
||||
self.stats[hook_fn.__name__].append(out)
|
||||
return append_activation_stats
|
||||
|
||||
def register_hook(self, hook_fn_loc, hook_fn):
|
||||
for name, module in self.model.named_modules():
|
||||
if not fnmatch.fnmatch(name, hook_fn_loc):
|
||||
continue
|
||||
module.register_forward_hook(self._create_hook(hook_fn))
|
||||
|
||||
|
||||
def extract_spp_stats(model,
|
||||
hook_fn_locs,
|
||||
hook_fns,
|
||||
input_shape=[8, 3, 224, 224]):
|
||||
"""Extract average square channel mean and variance of activations during
|
||||
forward pass to plot Signal Propogation Plots (SPP).
|
||||
|
||||
Paper: https://arxiv.org/abs/2101.08692
|
||||
|
||||
Example Usage: https://gist.github.com/amaarora/6e56942fcb46e67ba203f3009b30d950
|
||||
"""
|
||||
x = torch.normal(0., 1., input_shape)
|
||||
hook = ActivationStatsHook(model, hook_fn_locs=hook_fn_locs, hook_fns=hook_fns)
|
||||
_ = model(x)
|
||||
return hook.stats
|
||||
|
Loading…
Reference in New Issue