From 245ad4f41ad23438803c1804763c23a1e447b1ec Mon Sep 17 00:00:00 2001 From: belfner Date: Mon, 18 Sep 2023 21:49:17 -0400 Subject: [PATCH] Added missing RuntimeError to builder functions of models that do not currently support feature extraction --- timm/models/convmixer.py | 3 +++ timm/models/efficientformer.py | 3 +++ timm/models/mvitv2.py | 3 +++ timm/models/xcit.py | 3 +++ 4 files changed, 12 insertions(+) diff --git a/timm/models/convmixer.py b/timm/models/convmixer.py index 55220bc0..854f84a0 100644 --- a/timm/models/convmixer.py +++ b/timm/models/convmixer.py @@ -101,6 +101,9 @@ class ConvMixer(nn.Module): def _create_convmixer(variant, pretrained=False, **kwargs): + if kwargs.get('features_only', None): + raise RuntimeError('features_only not implemented for ConvMixer models.') + return build_model_with_cfg(ConvMixer, variant, pretrained, **kwargs) diff --git a/timm/models/efficientformer.py b/timm/models/efficientformer.py index 04204b3d..fe869d66 100644 --- a/timm/models/efficientformer.py +++ b/timm/models/efficientformer.py @@ -534,6 +534,9 @@ default_cfgs = generate_default_cfgs({ def _create_efficientformer(variant, pretrained=False, **kwargs): + if kwargs.get('features_only', None): + raise RuntimeError('features_only not implemented for EfficientFormer models.') + model = build_model_with_cfg( EfficientFormer, variant, pretrained, pretrained_filter_fn=_checkpoint_filter_fn, diff --git a/timm/models/mvitv2.py b/timm/models/mvitv2.py index bc18bbc2..692bf0ea 100644 --- a/timm/models/mvitv2.py +++ b/timm/models/mvitv2.py @@ -948,6 +948,9 @@ model_cfgs = dict( def _create_mvitv2(variant, cfg_variant=None, pretrained=False, **kwargs): + if kwargs.get('features_only', None): + raise RuntimeError('features_only not implemented for Multiscale Vision Transformer models.') + return build_model_with_cfg( MultiScaleVit, variant, diff --git a/timm/models/xcit.py b/timm/models/xcit.py index a4cf9e46..7160c836 100644 --- a/timm/models/xcit.py +++ b/timm/models/xcit.py @@ -497,6 +497,9 @@ def checkpoint_filter_fn(state_dict, model): def _create_xcit(variant, pretrained=False, default_cfg=None, **kwargs): + if kwargs.get('features_only', None): + raise RuntimeError('features_only not implemented for Cross-Covariance Image Transformers models.') + model = build_model_with_cfg( Xcit, variant,