mirror of
https://github.com/huggingface/pytorch-image-models.git
synced 2025-06-03 15:01:08 +08:00
update some model
This commit is contained in:
parent
99c25fa5c0
commit
2e9b2a76fb
@ -452,28 +452,28 @@ class ConvNeXt(nn.Module):
|
||||
"""
|
||||
assert output_fmt in ('NCHW',), 'Output shape must be NCHW.'
|
||||
intermediates = []
|
||||
take_indices, max_index = feature_take_indices(len(self.stages) + 1, indices)
|
||||
take_indices, max_index = feature_take_indices(len(self.stages), indices)
|
||||
|
||||
# forward pass
|
||||
feat_idx = 0 # stem is index 0
|
||||
x = self.stem(x)
|
||||
if feat_idx in take_indices:
|
||||
intermediates.append(x)
|
||||
|
||||
last_idx = len(self.stages) - 1
|
||||
if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript
|
||||
stages = self.stages
|
||||
else:
|
||||
stages = self.stages[:max_index]
|
||||
for stage in stages:
|
||||
feat_idx += 1
|
||||
stages = self.stages[:max_index + 1]
|
||||
for feat_idx, stage in enumerate(stages):
|
||||
x = stage(x)
|
||||
if feat_idx in take_indices:
|
||||
# NOTE not bothering to apply norm_pre when norm=True as almost no models have it enabled
|
||||
if norm and feat_idx == last_idx:
|
||||
intermediates.append(self.norm_pre(x))
|
||||
else:
|
||||
intermediates.append(x)
|
||||
|
||||
if intermediates_only:
|
||||
return intermediates
|
||||
|
||||
if feat_idx == last_idx:
|
||||
x = self.norm_pre(x)
|
||||
|
||||
return x, intermediates
|
||||
|
@ -491,7 +491,7 @@ class FocalNet(nn.Module):
|
||||
else:
|
||||
stages = self.layers[:max_index + 1]
|
||||
|
||||
last_idx = len(self.layers)
|
||||
last_idx = len(self.layers) - 1
|
||||
for feat_idx, stage in enumerate(stages):
|
||||
x = stage(x)
|
||||
if feat_idx in take_indices:
|
||||
|
@ -870,10 +870,11 @@ class MultiScaleVit(nn.Module):
|
||||
if self.pos_embed is not None:
|
||||
x = x + self.pos_embed
|
||||
|
||||
for i, stage in enumerate(self.stages):
|
||||
last_idx = len(self.stages) - 1
|
||||
for feat_idx, stage in enumerate(self.stages):
|
||||
x, feat_size = stage(x, feat_size)
|
||||
if i in take_indices:
|
||||
if norm and i == (len(self.stages) - 1):
|
||||
if feat_idx in take_indices:
|
||||
if norm and feat_idx == last_idx:
|
||||
x_inter = self.norm(x) # applying final norm last intermediate
|
||||
else:
|
||||
x_inter = x
|
||||
@ -887,6 +888,7 @@ class MultiScaleVit(nn.Module):
|
||||
if intermediates_only:
|
||||
return intermediates
|
||||
|
||||
if feat_idx == last_idx:
|
||||
x = self.norm(x)
|
||||
|
||||
return x, intermediates
|
||||
|
@ -14,7 +14,7 @@ Modifications for timm by / Copyright 2020 Ross Wightman
|
||||
import math
|
||||
import re
|
||||
from functools import partial
|
||||
from typing import Optional, Sequence, Tuple
|
||||
from typing import List, Optional, Sequence, Tuple, Union
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
@ -22,6 +22,7 @@ from torch import nn
|
||||
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
||||
from timm.layers import trunc_normal_, to_2tuple
|
||||
from ._builder import build_model_with_cfg
|
||||
from ._features import feature_take_indices
|
||||
from ._registry import register_model, generate_default_cfgs
|
||||
from .vision_transformer import Block
|
||||
|
||||
@ -254,6 +255,71 @@ class PoolingVisionTransformer(nn.Module):
|
||||
if self.head_dist is not None:
|
||||
self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity()
|
||||
|
||||
def forward_intermediates(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
indices: Optional[Union[int, List[int]]] = None,
|
||||
norm: bool = False,
|
||||
stop_early: bool = False,
|
||||
output_fmt: str = 'NCHW',
|
||||
intermediates_only: bool = False,
|
||||
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
|
||||
""" Forward features that returns intermediates.
|
||||
|
||||
Args:
|
||||
x: Input image tensor
|
||||
indices: Take last n blocks if int, all if None, select matching indices if sequence
|
||||
norm: Apply norm layer to compatible intermediates
|
||||
stop_early: Stop iterating over blocks when last desired intermediate hit
|
||||
output_fmt: Shape of intermediate feature outputs
|
||||
intermediates_only: Only return intermediate features
|
||||
Returns:
|
||||
|
||||
"""
|
||||
assert output_fmt in ('NCHW',), 'Output shape must be NCHW.'
|
||||
intermediates = []
|
||||
take_indices, max_index = feature_take_indices(len(self.transformers), indices)
|
||||
|
||||
# forward pass
|
||||
x = self.patch_embed(x)
|
||||
x = self.pos_drop(x + self.pos_embed)
|
||||
cls_tokens = self.cls_token.expand(x.shape[0], -1, -1)
|
||||
|
||||
last_idx = len(self.transformers) - 1
|
||||
if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript
|
||||
stages = self.transformers
|
||||
else:
|
||||
stages = self.transformers[:max_index + 1]
|
||||
|
||||
for feat_idx, stage in enumerate(stages):
|
||||
x, cls_tokens = stage((x, cls_tokens))
|
||||
if feat_idx in take_indices:
|
||||
intermediates.append(x)
|
||||
|
||||
if intermediates_only:
|
||||
return intermediates
|
||||
|
||||
if feat_idx == last_idx:
|
||||
cls_tokens = self.norm(cls_tokens)
|
||||
|
||||
return cls_tokens, intermediates
|
||||
|
||||
def prune_intermediate_layers(
|
||||
self,
|
||||
indices: Union[int, List[int]] = 1,
|
||||
prune_norm: bool = False,
|
||||
prune_head: bool = True,
|
||||
):
|
||||
""" Prune layers not required for specified intermediates.
|
||||
"""
|
||||
take_indices, max_index = feature_take_indices(len(self.transformers), indices)
|
||||
self.stages = self.stages[:max_index + 1] # truncate blocks w/ stem as idx 0
|
||||
if prune_norm:
|
||||
self.norm = nn.Identity()
|
||||
if prune_head:
|
||||
self.reset_classifier(0, '')
|
||||
return take_indices
|
||||
|
||||
def forward_features(self, x):
|
||||
x = self.patch_embed(x)
|
||||
x = self.pos_drop(x + self.pos_embed)
|
||||
|
@ -302,20 +302,20 @@ class RDNet(nn.Module):
|
||||
"""
|
||||
assert output_fmt in ('NCHW',), 'Output shape must be NCHW.'
|
||||
intermediates = []
|
||||
take_indices, max_index = feature_take_indices(len(self.dense_stages) + 1, indices)
|
||||
stage_ends = [int(info['module'].split('.')[-1]) for info in self.feature_info]
|
||||
take_indices, max_index = feature_take_indices(len(stage_ends), indices)
|
||||
take_indices = [stage_ends[i] for i in take_indices]
|
||||
max_index = stage_ends[max_index]
|
||||
|
||||
# forward pass
|
||||
feat_idx = 0 # stem is index 0
|
||||
x = self.stem(x)
|
||||
if feat_idx in take_indices:
|
||||
intermediates.append(x)
|
||||
last_idx = len(self.dense_stages)
|
||||
|
||||
last_idx = len(self.dense_stages) - 1
|
||||
if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript
|
||||
dense_stages = self.dense_stages
|
||||
else:
|
||||
dense_stages = self.dense_stages[:max_index]
|
||||
for stage in dense_stages:
|
||||
feat_idx += 1
|
||||
dense_stages = self.dense_stages[:max_index + 1]
|
||||
for feat_idx, stage in enumerate(dense_stages):
|
||||
x = stage(x)
|
||||
if feat_idx in take_indices:
|
||||
if norm and feat_idx == last_idx:
|
||||
@ -340,8 +340,10 @@ class RDNet(nn.Module):
|
||||
):
|
||||
""" Prune layers not required for specified intermediates.
|
||||
"""
|
||||
take_indices, max_index = feature_take_indices(len(self.dense_stages) + 1, indices)
|
||||
self.dense_stages = self.dense_stages[:max_index] # truncate blocks w/ stem as idx 0
|
||||
stage_ends = [int(info['module'].split('.')[-1]) for info in self.feature_info]
|
||||
take_indices, max_index = feature_take_indices(len(stage_ends), indices)
|
||||
max_index = stage_ends[max_index]
|
||||
self.dense_stages = self.dense_stages[:max_index + 1] # truncate blocks w/ stem as idx 0
|
||||
if prune_norm:
|
||||
self.norm_pre = nn.Identity()
|
||||
if prune_head:
|
||||
|
@ -571,9 +571,13 @@ class ResNetV2(nn.Module):
|
||||
|
||||
# forward pass
|
||||
feat_idx = 0
|
||||
x = self.stem(x)
|
||||
H, W = x.shape[-2:]
|
||||
for stem in self.stem:
|
||||
x = stem(x)
|
||||
if x.shape[-2:] == (H //2, W //2):
|
||||
x_down = x
|
||||
if feat_idx in take_indices:
|
||||
intermediates.append(x)
|
||||
intermediates.append(x_down)
|
||||
last_idx = len(self.stages)
|
||||
if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript
|
||||
stages = self.stages
|
||||
|
@ -495,6 +495,7 @@ class Xcit(nn.Module):
|
||||
x = torch.cat((self.cls_token.expand(B, -1, -1), x), dim=1)
|
||||
for blk in self.cls_attn_blocks:
|
||||
x = blk(x)
|
||||
|
||||
x = self.norm(x)
|
||||
|
||||
return x, intermediates
|
||||
|
Loading…
x
Reference in New Issue
Block a user