mirror of
https://github.com/huggingface/pytorch-image-models.git
synced 2025-06-03 15:01:08 +08:00
Exclude the large models from default_cfgs, failing github CI
This commit is contained in:
parent
5aebad3fbc
commit
2fc5ac3d18
@ -146,7 +146,8 @@ def test_model_backward(model_name, batch_size):
|
||||
|
||||
@pytest.mark.cfg
|
||||
@pytest.mark.timeout(300)
|
||||
@pytest.mark.parametrize('model_name', list_models(exclude_filters=NON_STD_FILTERS, include_tags=True))
|
||||
@pytest.mark.parametrize('model_name', list_models(
|
||||
exclude_filters=EXCLUDE_FILTERS + NON_STD_FILTERS, include_tags=True))
|
||||
@pytest.mark.parametrize('batch_size', [1])
|
||||
def test_model_default_cfgs(model_name, batch_size):
|
||||
"""Run a single forward pass with each model"""
|
||||
@ -172,6 +173,8 @@ def test_model_default_cfgs(model_name, batch_size):
|
||||
outputs = model.forward_features(input_tensor)
|
||||
assert outputs.shape[spatial_axis[0]] == pool_size[0], 'unpooled feature shape != config'
|
||||
assert outputs.shape[spatial_axis[1]] == pool_size[1], 'unpooled feature shape != config'
|
||||
if not isinstance(model, (timm.models.MobileNetV3, timm.models.GhostNet, timm.models.VGG)):
|
||||
assert outputs.shape[feat_axis] == model.num_features
|
||||
|
||||
# test forward after deleting the classifier, output should be poooled, size(-1) == model.num_features
|
||||
model.reset_classifier(0)
|
||||
|
Loading…
x
Reference in New Issue
Block a user