mirror of
https://github.com/huggingface/pytorch-image-models.git
synced 2025-06-03 15:01:08 +08:00
Update Auto/RandAugment comments, README, more.
* Add a weighted choice option for RandAugment * Adjust magnitude noise/std naming, config
This commit is contained in:
parent
4243f076f1
commit
31453b039e
@ -69,6 +69,7 @@ Several (less common) features that I often utilize in my projects are included.
|
||||
* Training schedules and techniques that provide competitive results (Cosine LR, Random Erasing, Label Smoothing, etc)
|
||||
* Mixup (as in https://arxiv.org/abs/1710.09412) - currently implementing/testing
|
||||
* An inference script that dumps output to CSV is provided as an example
|
||||
* AutoAugment (https://arxiv.org/abs/1805.09501) and RandAugment (https://arxiv.org/abs/1909.13719) ImageNet configurations modeled after impl for EfficientNet training (https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/autoaugment.py)
|
||||
|
||||
## Results
|
||||
|
||||
|
@ -1,7 +1,7 @@
|
||||
""" Auto Augment
|
||||
""" AutoAugment and RandAugment
|
||||
Implementation adapted from:
|
||||
https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/autoaugment.py
|
||||
Papers: https://arxiv.org/abs/1805.09501 and https://arxiv.org/abs/1906.11172
|
||||
Papers: https://arxiv.org/abs/1805.09501, https://arxiv.org/abs/1906.11172, and https://arxiv.org/abs/1909.13719
|
||||
|
||||
Hacked together by Ross Wightman
|
||||
"""
|
||||
@ -288,18 +288,18 @@ class AutoAugmentOp:
|
||||
resample=hparams['interpolation'] if 'interpolation' in hparams else _RANDOM_INTERPOLATION,
|
||||
)
|
||||
|
||||
# If magnitude_noise is > 0, we introduce some randomness
|
||||
# If magnitude_std is > 0, we introduce some randomness
|
||||
# in the usually fixed policy and sample magnitude from a normal distribution
|
||||
# with mean `magnitude` and std-dev of `magnitude_noise`.
|
||||
# with mean `magnitude` and std-dev of `magnitude_std`.
|
||||
# NOTE This is my own hack, being tested, not in papers or reference impls.
|
||||
self.magnitude_noise = self.hparams.get('magnitude_noise', 0)
|
||||
self.magnitude_std = self.hparams.get('magnitude_std', 0)
|
||||
|
||||
def __call__(self, img):
|
||||
if random.random() > self.prob:
|
||||
return img
|
||||
magnitude = self.magnitude
|
||||
if self.magnitude_noise and self.magnitude_noise > 0:
|
||||
magnitude = random.gauss(magnitude, self.magnitude_noise)
|
||||
if self.magnitude_std and self.magnitude_std > 0:
|
||||
magnitude = random.gauss(magnitude, self.magnitude_std)
|
||||
magnitude = min(_MAX_LEVEL, max(0, magnitude)) # clip to valid range
|
||||
level_args = self.level_fn(magnitude, self.hparams) if self.level_fn is not None else tuple()
|
||||
return self.aug_fn(img, *level_args, **self.kwargs)
|
||||
@ -464,16 +464,32 @@ class AutoAugment:
|
||||
|
||||
|
||||
def auto_augment_transform(config_str, hparams):
|
||||
"""
|
||||
Create a AutoAugment transform
|
||||
|
||||
:param config_str: String defining configuration of auto augmentation. Consists of multiple sections separated by
|
||||
dashes ('-'). The first section defines the AutoAugment policy (one of 'v0', 'v0r', 'original', 'originalr').
|
||||
The remaining sections, not order sepecific determine
|
||||
'mstd' - float std deviation of magnitude noise applied
|
||||
Ex 'original-mstd0.5' results in AutoAugment with original policy, magnitude_std 0.5
|
||||
|
||||
:param hparams: Other hparams (kwargs) for the AutoAugmentation scheme
|
||||
|
||||
:return: A PyTorch compatible Transform
|
||||
"""
|
||||
config = config_str.split('-')
|
||||
policy_name = config[0]
|
||||
config = config[1:]
|
||||
for c in config:
|
||||
cs = re.split(r'(\d.*)', c)
|
||||
if len(cs) >= 2:
|
||||
key, val = cs[:2]
|
||||
if key == 'noise':
|
||||
# noise param injected via hparams for now
|
||||
hparams.setdefault('magnitude_noise', float(val))
|
||||
if len(cs) < 2:
|
||||
continue
|
||||
key, val = cs[:2]
|
||||
if key == 'mstd':
|
||||
# noise param injected via hparams for now
|
||||
hparams.setdefault('magnitude_std', float(val))
|
||||
else:
|
||||
assert False, 'Unknown AutoAugment config section'
|
||||
aa_policy = auto_augment_policy(policy_name, hparams=hparams)
|
||||
return AutoAugment(aa_policy)
|
||||
|
||||
@ -498,6 +514,36 @@ _RAND_TRANSFORMS = [
|
||||
]
|
||||
|
||||
|
||||
# These experimental weights are based loosely on the relative improvements mentioned in paper.
|
||||
# They may not result in increased performance, but could likely be tuned to so.
|
||||
_RAND_CHOICE_WEIGHTS_0 = {
|
||||
'Rotate': 0.3,
|
||||
'ShearX': 0.2,
|
||||
'ShearY': 0.2,
|
||||
'TranslateXRel': 0.1,
|
||||
'TranslateYRel': 0.1,
|
||||
'Color': .025,
|
||||
'Sharpness': 0.025,
|
||||
'AutoContrast': 0.025,
|
||||
'Solarize': .005,
|
||||
'SolarizeAdd': .005,
|
||||
'Contrast': .005,
|
||||
'Brightness': .005,
|
||||
'Equalize': .005,
|
||||
'PosterizeTpu': 0,
|
||||
'Invert': 0,
|
||||
}
|
||||
|
||||
|
||||
def _select_rand_weights(weight_idx=0, transforms=None):
|
||||
transforms = transforms or _RAND_TRANSFORMS
|
||||
assert weight_idx == 0 # only one set of weights currently
|
||||
rand_weights = _RAND_CHOICE_WEIGHTS_0
|
||||
probs = [rand_weights[k] for k in transforms]
|
||||
probs /= np.sum(probs)
|
||||
return probs
|
||||
|
||||
|
||||
def rand_augment_ops(magnitude=10, hparams=None, transforms=None):
|
||||
hparams = hparams or _HPARAMS_DEFAULT
|
||||
transforms = transforms or _RAND_TRANSFORMS
|
||||
@ -506,33 +552,60 @@ def rand_augment_ops(magnitude=10, hparams=None, transforms=None):
|
||||
|
||||
|
||||
class RandAugment:
|
||||
def __init__(self, ops, num_layers=2):
|
||||
def __init__(self, ops, num_layers=2, choice_weights=None):
|
||||
self.ops = ops
|
||||
self.num_layers = num_layers
|
||||
self.choice_weights = choice_weights
|
||||
|
||||
def __call__(self, img):
|
||||
for _ in range(self.num_layers):
|
||||
op = random.choice(self.ops)
|
||||
# no replacement when using weighted choice
|
||||
ops = np.random.choice(
|
||||
self.ops, self.num_layers, replace=self.choice_weights is None, p=self.choice_weights)
|
||||
for op in ops:
|
||||
img = op(img)
|
||||
return img
|
||||
|
||||
|
||||
def rand_augment_transform(config_str, hparams):
|
||||
magnitude = 10
|
||||
num_layers = 2
|
||||
"""
|
||||
Create a RandAugment transform
|
||||
|
||||
:param config_str: String defining configuration of random augmentation. Consists of multiple sections separated by
|
||||
dashes ('-'). The first section defines the specific variant of rand augment (currently only 'rand'). The remaining
|
||||
sections, not order sepecific determine
|
||||
'm' - integer magnitude of rand augment
|
||||
'n' - integer num layers (number of transform ops selected per image)
|
||||
'w' - integer probabiliy weight index (index of a set of weights to influence choice of op)
|
||||
'mstd' - float std deviation of magnitude noise applied
|
||||
Ex 'rand-m9-n3-mstd0.5' results in RandAugment with magnitude 9, num_layers 3, magnitude_std 0.5
|
||||
'rand-mstd1-w0' results in magnitude_std 1.0, weights 0, default magnitude of 10 and num_layers 2
|
||||
|
||||
:param hparams: Other hparams (kwargs) for the RandAugmentation scheme
|
||||
|
||||
:return: A PyTorch compatible Transform
|
||||
"""
|
||||
magnitude = _MAX_LEVEL # default to _MAX_LEVEL for magnitude (currently 10)
|
||||
num_layers = 2 # default to 2 ops per image
|
||||
weight_idx = None # default to no probability weights for op choice
|
||||
config = config_str.split('-')
|
||||
assert config[0] == 'rand'
|
||||
config = config[1:]
|
||||
for c in config:
|
||||
cs = re.split(r'(\d.*)', c)
|
||||
if len(cs) >= 2:
|
||||
key, val = cs[:2]
|
||||
if key == 'noise':
|
||||
# noise param injected via hparams for now
|
||||
hparams.setdefault('magnitude_noise', float(val))
|
||||
elif key == 'm':
|
||||
magnitude = int(val)
|
||||
elif key == 'n':
|
||||
num_layers = int(val)
|
||||
if len(cs) < 2:
|
||||
continue
|
||||
key, val = cs[:2]
|
||||
if key == 'mstd':
|
||||
# noise param injected via hparams for now
|
||||
hparams.setdefault('magnitude_std', float(val))
|
||||
elif key == 'm':
|
||||
magnitude = int(val)
|
||||
elif key == 'n':
|
||||
num_layers = int(val)
|
||||
elif key == 'w':
|
||||
weight_idx = int(val)
|
||||
else:
|
||||
assert False, 'Unknown RandAugment config section'
|
||||
ra_ops = rand_augment_ops(magnitude=magnitude, hparams=hparams)
|
||||
return RandAugment(ra_ops, num_layers)
|
||||
choice_weights = None if weight_idx is None else _select_rand_weights(weight_idx)
|
||||
return RandAugment(ra_ops, num_layers, choice_weights=choice_weights)
|
||||
|
@ -190,7 +190,7 @@ def transforms_imagenet_train(
|
||||
)
|
||||
if interpolation and interpolation != 'random':
|
||||
aa_params['interpolation'] = _pil_interp(interpolation)
|
||||
if 'rand' in auto_augment:
|
||||
if auto_augment.startswith('rand'):
|
||||
tfl += [rand_augment_transform(auto_augment, aa_params)]
|
||||
else:
|
||||
tfl += [auto_augment_transform(auto_augment, aa_params)]
|
||||
|
Loading…
x
Reference in New Issue
Block a user