Change flattening behaviour in Kron
parent
cdbafd9057
commit
31831f5948
|
@ -94,7 +94,8 @@ class Kron(torch.optim.Optimizer):
|
|||
mu_dtype: Dtype of the momentum accumulator.
|
||||
precond_dtype: Dtype of the preconditioner.
|
||||
decoupled_decay: AdamW style decoupled weight decay
|
||||
flatten_dim: Flatten dim >= 2 instead of relying on expressions
|
||||
flatten: Flatten dimensions instead of fully relying on expressions for higher rank params
|
||||
flatten_start_end: Range of dimensions to flatten, defaults to (2, -1).
|
||||
deterministic: Deterministic behaviour across save / load (resume). FIXME slow, needs work
|
||||
"""
|
||||
|
||||
|
@ -114,7 +115,8 @@ class Kron(torch.optim.Optimizer):
|
|||
mu_dtype: Optional[torch.dtype] = None,
|
||||
precond_dtype: Optional[torch.dtype] = None,
|
||||
decoupled_decay: bool = False,
|
||||
flatten_dim: bool = False,
|
||||
flatten: bool = False,
|
||||
flatten_start_end: Tuple[int, int] = (2, -1),
|
||||
deterministic: bool = False,
|
||||
):
|
||||
if not has_opt_einsum:
|
||||
|
@ -141,7 +143,8 @@ class Kron(torch.optim.Optimizer):
|
|||
mu_dtype=mu_dtype,
|
||||
precond_dtype=precond_dtype,
|
||||
decoupled_decay=decoupled_decay,
|
||||
flatten_dim=flatten_dim,
|
||||
flatten=flatten,
|
||||
flatten_start_end=flatten_start_end,
|
||||
)
|
||||
super(Kron, self).__init__(params, defaults)
|
||||
|
||||
|
@ -229,8 +232,11 @@ class Kron(torch.optim.Optimizer):
|
|||
|
||||
grad = p.grad
|
||||
state = self.state[p]
|
||||
if group['flatten_dim']:
|
||||
grad = grad.view(grad.size(0), -1)
|
||||
|
||||
flattened = False
|
||||
if group['flatten']:
|
||||
grad = safe_flatten(grad, *group["flatten_start_end"])
|
||||
flattened = True
|
||||
|
||||
if len(state) == 0:
|
||||
state["step"] = 0
|
||||
|
@ -341,7 +347,7 @@ class Kron(torch.optim.Optimizer):
|
|||
|
||||
# RMS of pre_grad should be 1.0, so let's cap at 1.1
|
||||
pre_grad.mul_(torch.clamp(1.1 / (pre_grad.square().mean().sqrt_() + 1e-8), max=1.0))
|
||||
if group['flatten_dim']:
|
||||
if flattened:
|
||||
pre_grad = pre_grad.view(p.shape)
|
||||
|
||||
# Apply weight decay
|
||||
|
@ -361,6 +367,20 @@ class Kron(torch.optim.Optimizer):
|
|||
return loss
|
||||
|
||||
|
||||
def safe_flatten(tensor, start_dim=0, end_dim=-1):
|
||||
ndim = tensor.ndim
|
||||
|
||||
# Convert negative end_dim to positive and clip to end
|
||||
end_dim = min(end_dim if end_dim >= 0 else ndim + end_dim, ndim - 1)
|
||||
|
||||
# If tensor has fewer dims than start_dim or start > end, return tensor as is
|
||||
if ndim <= start_dim or start_dim > end_dim:
|
||||
return tensor
|
||||
|
||||
# Now safe to flatten
|
||||
return tensor.flatten(start_dim, end_dim)
|
||||
|
||||
|
||||
def _init_Q_exprs(
|
||||
t,
|
||||
scale,
|
||||
|
|
Loading…
Reference in New Issue