InceptionNeXt using timm builder, more cleanup

This commit is contained in:
Ross Wightman 2023-08-23 14:43:42 -07:00 committed by Ross Wightman
parent f4cf9775c3
commit 3d8d7450ad

View File

@ -1,7 +1,5 @@
"""
InceptionNeXt implementation, paper: https://arxiv.org/abs/2303.16900
Some code is borrowed from timm: https://github.com/huggingface/pytorch-image-models
"""
from functools import partial
@ -11,24 +9,31 @@ import torch.nn as nn
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import trunc_normal_, DropPath, to_2tuple
from ._builder import build_model_with_cfg
from ._manipulate import checkpoint_seq
from ._registry import register_model
from ._registry import register_model, generate_default_cfgs
class InceptionDWConv2d(nn.Module):
""" Inception depthweise convolution
"""
def __init__(self, in_channels, square_kernel_size=3, band_kernel_size=11, branch_ratio=0.125):
def __init__(
self,
in_chs,
square_kernel_size=3,
band_kernel_size=11,
branch_ratio=0.125
):
super().__init__()
gc = int(in_channels * branch_ratio) # channel numbers of a convolution branch
gc = int(in_chs * branch_ratio) # channel numbers of a convolution branch
self.dwconv_hw = nn.Conv2d(gc, gc, square_kernel_size, padding=square_kernel_size // 2, groups=gc)
self.dwconv_w = nn.Conv2d(
gc, gc, kernel_size=(1, band_kernel_size), padding=(0, band_kernel_size // 2), groups=gc)
self.dwconv_h = nn.Conv2d(
gc, gc, kernel_size=(band_kernel_size, 1), padding=(band_kernel_size // 2, 0), groups=gc)
self.split_indexes = (in_channels - 3 * gc, gc, gc, gc)
self.split_indexes = (in_chs - 3 * gc, gc, gc, gc)
def forward(self, x):
x_id, x_hw, x_w, x_h = torch.split(x, self.split_indexes, dim=1)
@ -47,8 +52,15 @@ class ConvMlp(nn.Module):
"""
def __init__(
self, in_features, hidden_features=None, out_features=None, act_layer=nn.ReLU,
norm_layer=None, bias=True, drop=0.):
self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.ReLU,
norm_layer=None,
bias=True,
drop=0.,
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
@ -69,13 +81,20 @@ class ConvMlp(nn.Module):
return x
class MlpHead(nn.Module):
class MlpClassifierHead(nn.Module):
""" MLP classification head
"""
def __init__(
self, dim, num_classes=1000, mlp_ratio=3, act_layer=nn.GELU,
norm_layer=partial(nn.LayerNorm, eps=1e-6), drop=0., bias=True):
self,
dim,
num_classes=1000,
mlp_ratio=3,
act_layer=nn.GELU,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
drop=0.,
bias=True
):
super().__init__()
hidden_features = int(mlp_ratio * dim)
self.fc1 = nn.Linear(dim, hidden_features, bias=bias)
@ -168,7 +187,6 @@ class MetaNeXtStage(nn.Module):
norm_layer=norm_layer,
mlp_ratio=mlp_ratio,
))
in_chs = out_chs
self.blocks = nn.Sequential(*stage_blocks)
def forward(self, x):
@ -209,11 +227,10 @@ class MetaNeXt(nn.Module):
norm_layer=nn.BatchNorm2d,
act_layer=nn.GELU,
mlp_ratios=(4, 4, 4, 3),
head_fn=MlpHead,
head_fn=MlpClassifierHead,
drop_rate=0.,
drop_path_rate=0.,
ls_init_value=1e-6,
**kwargs,
):
super().__init__()
@ -255,6 +272,30 @@ class MetaNeXt(nn.Module):
self.head = head_fn(self.num_features, num_classes, drop=drop_rate)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, (nn.Conv2d, nn.Linear)):
trunc_normal_(m.weight, std=.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
@torch.jit.ignore
def group_matcher(self, coarse=False):
return dict(
stem=r'^stem',
blocks=r'^stages\.(\d+)' if coarse else [
(r'^stages\.(\d+)\.downsample', (0,)), # blocks
(r'^stages\.(\d+)\.blocks\.(\d+)', None),
]
)
@torch.jit.ignore
def get_classifier(self):
return self.head.fc2
def reset_classifier(self, num_classes=0, global_pool=None):
# FIXME
self.head.reset(num_classes, global_pool)
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
for s in self.stages:
@ -262,7 +303,7 @@ class MetaNeXt(nn.Module):
@torch.jit.ignore
def no_weight_decay(self):
return {'norm'}
return set()
def forward_features(self, x):
x = self.stem(x)
@ -278,12 +319,6 @@ class MetaNeXt(nn.Module):
x = self.forward_head(x)
return x
def _init_weights(self, m):
if isinstance(m, (nn.Conv2d, nn.Linear)):
trunc_normal_(m.weight, std=.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def _cfg(url='', **kwargs):
return {
@ -291,84 +326,59 @@ def _cfg(url='', **kwargs):
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
'crop_pct': 0.875, 'interpolation': 'bicubic',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'stem.0', 'classifier': 'head.fc',
'first_conv': 'stem.0', 'classifier': 'head.fc2',
**kwargs
}
default_cfgs = dict(
inception_next_tiny=_cfg(
default_cfgs = generate_default_cfgs({
'inception_next_tiny.sail_in1k': _cfg(
url='https://github.com/sail-sg/inceptionnext/releases/download/model/inceptionnext_tiny.pth',
),
inception_next_small=_cfg(
'inception_next_small.sail_in1k': _cfg(
url='https://github.com/sail-sg/inceptionnext/releases/download/model/inceptionnext_small.pth',
),
inception_next_base=_cfg(
'inception_next_base.sail_in1k': _cfg(
url='https://github.com/sail-sg/inceptionnext/releases/download/model/inceptionnext_base.pth',
crop_pct=0.95,
),
inception_next_base_384=_cfg(
'inception_next_base.sail_in1k_384': _cfg(
url='https://github.com/sail-sg/inceptionnext/releases/download/model/inceptionnext_base_384.pth',
input_size=(3, 384, 384), crop_pct=1.0,
),
)
})
def _create_inception_next(variant, pretrained=False, **kwargs):
model = build_model_with_cfg(
MetaNeXt, variant, pretrained,
feature_cfg=dict(out_indices=(0, 1, 2, 3), flatten_sequential=True),
**kwargs)
return model
@register_model
def inception_next_tiny(pretrained=False, **kwargs):
model = MetaNeXt(
model_args = dict(
depths=(3, 3, 9, 3), dims=(96, 192, 384, 768),
token_mixers=InceptionDWConv2d,
**kwargs
)
model.default_cfg = default_cfgs['inception_next_tiny']
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(
url=model.default_cfg['url'], map_location="cpu", check_hash=True)
model.load_state_dict(state_dict)
return model
return _create_inception_next('inception_next_tiny', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def inception_next_small(pretrained=False, **kwargs):
model = MetaNeXt(
model_args = dict(
depths=(3, 3, 27, 3), dims=(96, 192, 384, 768),
token_mixers=InceptionDWConv2d,
**kwargs
)
model.default_cfg = default_cfgs['inception_next_small']
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(
url=model.default_cfg['url'], map_location="cpu", check_hash=True)
model.load_state_dict(state_dict)
return model
return _create_inception_next('inception_next_small', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def inception_next_base(pretrained=False, **kwargs):
model = MetaNeXt(
model_args = dict(
depths=(3, 3, 27, 3), dims=(128, 256, 512, 1024),
token_mixers=InceptionDWConv2d,
**kwargs
)
model.default_cfg = default_cfgs['inception_next_base']
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(
url=model.default_cfg['url'], map_location="cpu", check_hash=True)
model.load_state_dict(state_dict)
return model
@register_model
def inception_next_base_384(pretrained=False, **kwargs):
model = MetaNeXt(
depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024],
mlp_ratios=[4, 4, 4, 3],
token_mixers=InceptionDWConv2d,
**kwargs
)
model.default_cfg = default_cfgs['inception_next_base_384']
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(
url=model.default_cfg['url'], map_location="cpu", check_hash=True)
model.load_state_dict(state_dict)
return model
return _create_inception_next('inception_next_base', pretrained=pretrained, **dict(model_args, **kwargs))