Add features_only, other bits to mambaout, define different base alternatives

This commit is contained in:
Ross Wightman 2024-09-13 11:25:04 -07:00
parent c2da12c7e1
commit 4542cf03f9

View File

@ -5,6 +5,7 @@ timm (https://github.com/rwightman/pytorch-image-models),
MetaFormer (https://github.com/sail-sg/metaformer),
InceptionNeXt (https://github.com/sail-sg/inceptionnext)
"""
from collections import OrderedDict
from typing import Optional
import torch
@ -120,7 +121,7 @@ class MlpHead(nn.Module):
def __init__(
self,
dim,
in_features,
num_classes=1000,
pool_type='avg',
act_layer=nn.GELU,
@ -130,27 +131,47 @@ class MlpHead(nn.Module):
bias=True,
):
super().__init__()
hidden_features = int(mlp_ratio * dim)
if mlp_ratio is not None:
hidden_size = int(mlp_ratio * in_features)
else:
hidden_size = None
self.pool_type = pool_type
self.in_features = in_features
self.hidden_size = hidden_size or in_features
self.norm1 = norm_layer(dim)
self.fc1 = nn.Linear(dim, hidden_features, bias=bias)
self.act = act_layer()
self.norm2 = norm_layer(hidden_features)
self.fc2 = nn.Linear(hidden_features, num_classes, bias=bias)
self.norm = norm_layer(in_features)
if hidden_size:
self.pre_logits = nn.Sequential(OrderedDict([
('fc', nn.Linear(in_features, hidden_size)),
('act', act_layer()),
('norm', norm_layer(hidden_size))
]))
self.num_features = hidden_size
else:
self.num_features = in_features
self.pre_logits = nn.Identity()
self.fc = nn.Linear(hidden_size, num_classes, bias=bias)
self.head_dropout = nn.Dropout(drop_rate)
def reset(self, num_classes: int, pool_type: Optional[str] = None, reset_other: bool = False):
if pool_type is not None:
self.pool_type = pool_type
if reset_other:
self.norm = nn.Identity()
self.pre_logits = nn.Identity()
self.num_features = self.in_features
self.fc = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
def forward(self, x, pre_logits: bool = False):
if self.pool_type == 'avg':
x = x.mean((1, 2))
x = self.norm1(x)
x = self.fc1(x)
x = self.act(x)
x = self.norm2(x)
x = self.norm(x)
x = self.pre_logits(x)
x = self.head_dropout(x)
if pre_logits:
return x
x = self.fc2(x)
x = self.fc(x)
return x
@ -284,6 +305,7 @@ class MambaOut(nn.Module):
norm_layer=LayerNorm,
act_layer=nn.GELU,
conv_ratio=1.0,
expansion_ratio=8/3,
kernel_size=7,
stem_mid_norm=True,
ls_init_value=None,
@ -303,6 +325,7 @@ class MambaOut(nn.Module):
num_stage = len(depths)
self.num_stage = num_stage
self.feature_info = []
self.stem = Stem(
in_chans,
@ -313,16 +336,20 @@ class MambaOut(nn.Module):
)
prev_dim = dims[0]
dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)]
self.stages = nn.ModuleList()
cur = 0
curr_stride = 4
self.stages = nn.Sequential()
for i in range(num_stage):
dim = dims[i]
stride = 2 if curr_stride == 2 or i > 0 else 1
curr_stride *= stride
stage = MambaOutStage(
dim=prev_dim,
dim_out=dim,
depth=depths[i],
kernel_size=kernel_size,
conv_ratio=conv_ratio,
expansion_ratio=expansion_ratio,
downsample=downsample if i > 0 else '',
ls_init_value=ls_init_value,
norm_layer=norm_layer,
@ -331,6 +358,8 @@ class MambaOut(nn.Module):
)
self.stages.append(stage)
prev_dim = dim
# NOTE feature_info use currently assumes stage 0 == stride 1, rest are stride 2
self.feature_info += [dict(num_chs=prev_dim, reduction=curr_stride, module=f'stages.{i}')]
cur += depths[i]
if head_fn == 'default':
@ -352,6 +381,8 @@ class MambaOut(nn.Module):
norm_layer=norm_layer,
drop_rate=drop_rate,
)
self.num_features = prev_dim
self.hidden_size = self.head.num_features
self.apply(self._init_weights)
@ -362,13 +393,31 @@ class MambaOut(nn.Module):
nn.init.constant_(m.bias, 0)
@torch.jit.ignore
def no_weight_decay(self):
return {}
def group_matcher(self, coarse=False):
return dict(
stem=r'^stem',
blocks=r'^stages\.(\d+)' if coarse else [
(r'^stages\.(\d+)\.downsample', (0,)), # blocks
(r'^stages\.(\d+)\.blocks\.(\d+)', None),
]
)
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
for s in self.stages:
s.grad_checkpointing = enable
@torch.jit.ignore
def get_classifier(self) -> nn.Module:
return self.head.fc
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None):
self.num_classes = num_classes
self.head.reset(num_classes, global_pool)
def forward_features(self, x):
x = self.stem(x)
for s in self.stages:
x = s(x)
x = self.stages(x)
return x
def forward_head(self, x, pre_logits: bool = False):
@ -391,10 +440,14 @@ def checkpoint_filter_fn(state_dict, model):
k = k.replace('downsample_layers.0.', 'stem.')
k = re.sub(r'stages.([0-9]+).([0-9]+)', r'stages.\1.blocks.\2', k)
k = re.sub(r'downsample_layers.([0-9]+)', r'stages.\1.downsample', k)
# remap head names
if k.startswith('norm.'):
k = k.replace('norm.', 'head.norm1.')
elif k.startswith('head.norm.'):
k = k.replace('head.norm.', 'head.norm2.')
# this is moving to head since it's after the pooling
k = k.replace('norm.', 'head.norm.')
elif k.startswith('head.'):
k = k.replace('head.fc1.', 'head.pre_logits.fc.')
k = k.replace('head.norm.', 'head.pre_logits.norm.')
k = k.replace('head.fc2.', 'head.fc.')
out_dict[k] = v
return out_dict
@ -405,7 +458,7 @@ def _cfg(url='', **kwargs):
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': 1.0, 'interpolation': 'bicubic',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'classifier': 'head',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'classifier': 'head.fc',
**kwargs
}
@ -422,7 +475,8 @@ default_cfgs = {
'mambaout_base': _cfg(
url='https://github.com/yuweihao/MambaOut/releases/download/model/mambaout_base.pth'),
'mambaout_small_rw': _cfg(),
'mambaout_base_rw': _cfg(),
'mambaout_base_slim_rw': _cfg(),
'mambaout_base_plus_rw': _cfg(),
}
@ -480,12 +534,29 @@ def mambaout_small_rw(pretrained=False, **kwargs):
@register_model
def mambaout_base_rw(pretrained=False, **kwargs):
def mambaout_base_slim_rw(pretrained=False, **kwargs):
model_args = dict(
depths=(3, 4, 27, 3),
dims=(128, 256, 512, 768),
expansion_ratio=2.5,
conv_ratio=1.25,
stem_mid_norm=False,
downsample='conv_nf',
ls_init_value=1e-6,
head_fn='norm_mlp',
)
return _create_mambaout('mambaout_base_rw', pretrained=pretrained, **dict(model_args, **kwargs))
return _create_mambaout('mambaout_base_slim_rw', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def mambaout_base_plus_rw(pretrained=False, **kwargs):
model_args = dict(
depths=(3, 4, 27, 3),
dims=(128, 256, 512, 768),
expansion_ratio=3.0,
stem_mid_norm=False,
downsample='conv_nf',
ls_init_value=1e-6,
head_fn='norm_mlp',
)
return _create_mambaout('mambaout_base_plus_rw', pretrained=pretrained, **dict(model_args, **kwargs))