mirror of
https://github.com/huggingface/pytorch-image-models.git
synced 2025-06-03 15:01:08 +08:00
Fix skip path regression for updated EfficientNet and RegNet def. Add Pre-Act RegNet support (experimental). Remove BN-TF flag. Add efficientnet_b0_g8_gn model.
This commit is contained in:
parent
a52a614475
commit
4dec8c8087
@ -120,7 +120,7 @@ default_cfgs = {
|
||||
# FIXME experimental
|
||||
'efficientnet_b0_gn': _cfg(
|
||||
url=''),
|
||||
'efficientnet_b0_g8': _cfg(
|
||||
'efficientnet_b0_g8_gn': _cfg(
|
||||
url=''),
|
||||
'efficientnet_b0_g16_evos': _cfg(
|
||||
url=''),
|
||||
@ -1389,10 +1389,11 @@ def efficientnet_b0_gn(pretrained=False, **kwargs):
|
||||
|
||||
|
||||
@register_model
|
||||
def efficientnet_b0_g8(pretrained=False, **kwargs):
|
||||
""" EfficientNet-B0 w/ group conv + BN"""
|
||||
def efficientnet_b0_g8_gn(pretrained=False, **kwargs):
|
||||
""" EfficientNet-B0 w/ group conv + GroupNorm"""
|
||||
model = _gen_efficientnet(
|
||||
'efficientnet_b0_g8', group_size=8, pretrained=pretrained, **kwargs)
|
||||
'efficientnet_b0_g8_gn', group_size=8, norm_layer=partial(GroupNormAct, group_size=8),
|
||||
pretrained=pretrained, **kwargs)
|
||||
return model
|
||||
|
||||
|
||||
|
@ -19,11 +19,7 @@ def num_groups(group_size, channels):
|
||||
return 1 # normal conv with 1 group
|
||||
else:
|
||||
# NOTE group_size == 1 -> depthwise conv
|
||||
#assert channels % group_size == 0
|
||||
if channels % group_size != 0:
|
||||
num_groups = math.floor(channels / group_size)
|
||||
print(channels, group_size, num_groups)
|
||||
return int(num_groups)
|
||||
assert channels % group_size == 0
|
||||
return channels // group_size
|
||||
|
||||
|
||||
@ -87,7 +83,7 @@ class ConvBnAct(nn.Module):
|
||||
x = self.conv(x)
|
||||
x = self.bn1(x)
|
||||
if self.has_skip:
|
||||
x = x + self.drop_path(shortcut)
|
||||
x = self.drop_path(x) + shortcut
|
||||
return x
|
||||
|
||||
|
||||
@ -131,7 +127,7 @@ class DepthwiseSeparableConv(nn.Module):
|
||||
x = self.conv_pw(x)
|
||||
x = self.bn2(x)
|
||||
if self.has_skip:
|
||||
x = x + self.drop_path(shortcut)
|
||||
x = self.drop_path(x) + shortcut
|
||||
return x
|
||||
|
||||
|
||||
@ -190,7 +186,7 @@ class InvertedResidual(nn.Module):
|
||||
x = self.conv_pwl(x)
|
||||
x = self.bn3(x)
|
||||
if self.has_skip:
|
||||
x = x + self.drop_path(shortcut)
|
||||
x = self.drop_path(x) + shortcut
|
||||
return x
|
||||
|
||||
|
||||
@ -225,7 +221,7 @@ class CondConvResidual(InvertedResidual):
|
||||
x = self.conv_pwl(x, routing_weights)
|
||||
x = self.bn3(x)
|
||||
if self.has_skip:
|
||||
x = x + self.drop_path(shortcut)
|
||||
x = self.drop_path(x) + shortcut
|
||||
return x
|
||||
|
||||
|
||||
@ -281,5 +277,5 @@ class EdgeResidual(nn.Module):
|
||||
x = self.conv_pwl(x)
|
||||
x = self.bn2(x)
|
||||
if self.has_skip:
|
||||
x = x + self.drop_path(shortcut)
|
||||
x = self.drop_path(x) + shortcut
|
||||
return x
|
||||
|
@ -40,7 +40,7 @@ def get_bn_args_tf():
|
||||
|
||||
|
||||
def resolve_bn_args(kwargs):
|
||||
bn_args = get_bn_args_tf() if kwargs.pop('bn_tf', False) else {}
|
||||
bn_args = {}
|
||||
bn_momentum = kwargs.pop('bn_momentum', None)
|
||||
if bn_momentum is not None:
|
||||
bn_args['momentum'] = bn_momentum
|
||||
|
@ -47,13 +47,6 @@ def create_model(
|
||||
"""
|
||||
source_name, model_name = split_model_name(model_name)
|
||||
|
||||
# Only EfficientNet and MobileNetV3 models have support for batchnorm params or drop_connect_rate passed as args
|
||||
is_efficientnet = is_model_in_modules(model_name, ['efficientnet', 'mobilenetv3'])
|
||||
if not is_efficientnet:
|
||||
kwargs.pop('bn_tf', None)
|
||||
kwargs.pop('bn_momentum', None)
|
||||
kwargs.pop('bn_eps', None)
|
||||
|
||||
# handle backwards compat with drop_connect -> drop_path change
|
||||
drop_connect_rate = kwargs.pop('drop_connect_rate', None)
|
||||
if drop_connect_rate is not None and kwargs.get('drop_path_rate', None) is None:
|
||||
|
@ -13,15 +13,18 @@ Weights from original impl have been modified
|
||||
|
||||
Hacked together by / Copyright 2020 Ross Wightman
|
||||
"""
|
||||
import numpy as np
|
||||
import torch.nn as nn
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
from functools import partial
|
||||
from typing import Optional, Union, Callable
|
||||
|
||||
import numpy as np
|
||||
import torch.nn as nn
|
||||
|
||||
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
||||
from .helpers import build_model_with_cfg, named_apply
|
||||
from .layers import ClassifierHead, AvgPool2dSame, ConvNormAct, SEModule, DropPath, get_act_layer, GroupNormAct
|
||||
from .layers import ClassifierHead, AvgPool2dSame, ConvNormAct, SEModule, DropPath, GroupNormAct
|
||||
from .layers import get_act_layer, get_norm_act_layer, create_conv2d
|
||||
from .registry import register_model
|
||||
|
||||
|
||||
@ -37,6 +40,8 @@ class RegNetCfg:
|
||||
stem_width: int = 32
|
||||
downsample: Optional[str] = 'conv1x1'
|
||||
linear_out: bool = False
|
||||
preact: bool = False
|
||||
num_features: int = 0
|
||||
act_layer: Union[str, Callable] = 'relu'
|
||||
norm_layer: Union[str, Callable] = 'batchnorm'
|
||||
|
||||
@ -75,15 +80,23 @@ model_cfgs = dict(
|
||||
regnety_040s_gn=RegNetCfg(
|
||||
w0=96, wa=31.41, wm=2.24, group_size=64, depth=22, se_ratio=0.25,
|
||||
act_layer='silu', norm_layer=partial(GroupNormAct, group_size=16)),
|
||||
# regnetv = 'preact regnet y'
|
||||
regnetv_040=RegNetCfg(
|
||||
depth=22, w0=96, wa=31.41, wm=2.24, group_size=64, se_ratio=0.25, preact=True, act_layer='silu'),
|
||||
# regnetw = 'preact regnet z'
|
||||
regnetw_040=RegNetCfg(
|
||||
depth=28, w0=48, wa=14.5, wm=2.226, group_size=8, bottle_ratio=4.0, se_ratio=0.25,
|
||||
downsample=None, preact=True, num_features=1536, act_layer='silu',
|
||||
),
|
||||
|
||||
# RegNet-Z (unverified)
|
||||
regnetz_005=RegNetCfg(
|
||||
depth=21, w0=16, wa=10.7, wm=2.51, group_size=4, bottle_ratio=4.0, se_ratio=0.25,
|
||||
downsample=None, linear_out=True, act_layer='silu',
|
||||
downsample=None, linear_out=True, num_features=1024, act_layer='silu',
|
||||
),
|
||||
regnetz_040=RegNetCfg(
|
||||
depth=28, w0=48, wa=14.5, wm=2.226, group_size=8, bottle_ratio=4.0, se_ratio=0.25,
|
||||
downsample=None, linear_out=True, act_layer='silu',
|
||||
downsample=None, linear_out=True, num_features=1536, act_layer='silu',
|
||||
),
|
||||
)
|
||||
|
||||
@ -130,6 +143,8 @@ default_cfgs = dict(
|
||||
regnety_320=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_320-ba464b29.pth'),
|
||||
|
||||
regnety_040s_gn=_cfg(url=''),
|
||||
regnetv_040=_cfg(url=''),
|
||||
regnetw_040=_cfg(url=''),
|
||||
|
||||
regnetz_005=_cfg(url=''),
|
||||
regnetz_040=_cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8)),
|
||||
@ -162,15 +177,18 @@ def generate_regnet(width_slope, width_initial, width_mult, depth, q=8):
|
||||
return widths, num_stages, max_stage, widths_cont
|
||||
|
||||
|
||||
def downsample_conv(in_chs, out_chs, kernel_size=1, stride=1, dilation=1, norm_layer=None):
|
||||
def downsample_conv(in_chs, out_chs, kernel_size=1, stride=1, dilation=1, norm_layer=None, preact=False):
|
||||
norm_layer = norm_layer or nn.BatchNorm2d
|
||||
kernel_size = 1 if stride == 1 and dilation == 1 else kernel_size
|
||||
dilation = dilation if kernel_size > 1 else 1
|
||||
return ConvNormAct(
|
||||
in_chs, out_chs, kernel_size, stride=stride, dilation=dilation, norm_layer=norm_layer, apply_act=False)
|
||||
if preact:
|
||||
return create_conv2d(in_chs, out_chs, kernel_size, stride=stride, dilation=dilation)
|
||||
else:
|
||||
return ConvNormAct(
|
||||
in_chs, out_chs, kernel_size, stride=stride, dilation=dilation, norm_layer=norm_layer, apply_act=False)
|
||||
|
||||
|
||||
def downsample_avg(in_chs, out_chs, kernel_size=1, stride=1, dilation=1, norm_layer=None):
|
||||
def downsample_avg(in_chs, out_chs, kernel_size=1, stride=1, dilation=1, norm_layer=None, preact=False):
|
||||
""" AvgPool Downsampling as in 'D' ResNet variants. This is not in RegNet space but I might experiment."""
|
||||
norm_layer = norm_layer or nn.BatchNorm2d
|
||||
avg_stride = stride if dilation == 1 else 1
|
||||
@ -178,20 +196,24 @@ def downsample_avg(in_chs, out_chs, kernel_size=1, stride=1, dilation=1, norm_la
|
||||
if stride > 1 or dilation > 1:
|
||||
avg_pool_fn = AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d
|
||||
pool = avg_pool_fn(2, avg_stride, ceil_mode=True, count_include_pad=False)
|
||||
return nn.Sequential(*[
|
||||
pool, ConvNormAct(in_chs, out_chs, 1, stride=1, norm_layer=norm_layer, apply_act=False)])
|
||||
if preact:
|
||||
conv = create_conv2d(in_chs, out_chs, 1, stride=1)
|
||||
else:
|
||||
conv = ConvNormAct(in_chs, out_chs, 1, stride=1, norm_layer=norm_layer, apply_act=False)
|
||||
return nn.Sequential(*[pool, conv])
|
||||
|
||||
|
||||
def create_shortcut(downsample_type, in_chs, out_chs, kernel_size, stride, dilation=(1, 1), norm_layer=None):
|
||||
def create_shortcut(
|
||||
downsample_type, in_chs, out_chs, kernel_size, stride, dilation=(1, 1), norm_layer=None, preact=False):
|
||||
assert downsample_type in ('avg', 'conv1x1', '', None)
|
||||
if in_chs != out_chs or stride != 1 or dilation[0] != dilation[1]:
|
||||
dargs = dict(stride=stride, dilation=dilation[0], norm_layer=norm_layer, preact=preact)
|
||||
if not downsample_type:
|
||||
return None # no shortcut, no downsample
|
||||
elif downsample_type == 'avg':
|
||||
return downsample_avg(in_chs, out_chs, stride=stride, dilation=dilation[0], norm_layer=norm_layer)
|
||||
return downsample_avg(in_chs, out_chs, **dargs)
|
||||
else:
|
||||
return downsample_conv(
|
||||
in_chs, out_chs, kernel_size=kernel_size, stride=stride, dilation=dilation[0], norm_layer=norm_layer)
|
||||
return downsample_conv(in_chs, out_chs, kernel_size=kernel_size, **dargs)
|
||||
else:
|
||||
return nn.Identity() # identity shortcut (no downsample)
|
||||
|
||||
@ -203,9 +225,10 @@ class Bottleneck(nn.Module):
|
||||
after conv3 to after conv2. Otherwise, it's just redefining the arguments for groups/bottleneck channels.
|
||||
"""
|
||||
|
||||
def __init__(self, in_chs, out_chs, stride=1, dilation=(1, 1), bottle_ratio=1, group_size=1, se_ratio=0.25,
|
||||
downsample='conv1x1', linear_out=False, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d,
|
||||
drop_block=None, drop_path_rate=0.):
|
||||
def __init__(
|
||||
self, in_chs, out_chs, stride=1, dilation=(1, 1), bottle_ratio=1, group_size=1, se_ratio=0.25,
|
||||
downsample='conv1x1', linear_out=False, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d,
|
||||
drop_block=None, drop_path_rate=0.):
|
||||
super(Bottleneck, self).__init__()
|
||||
act_layer = get_act_layer(act_layer)
|
||||
bottleneck_chs = int(round(out_chs * bottle_ratio))
|
||||
@ -238,22 +261,68 @@ class Bottleneck(nn.Module):
|
||||
if self.downsample is not None:
|
||||
# NOTE stuck with downsample as the attr name due to weight compatibility
|
||||
# now represents the shortcut, no shortcut if None, and non-downsample shortcut == nn.Identity()
|
||||
x = x + self.drop_path(self.downsample(shortcut))
|
||||
x = self.drop_path(x) + self.downsample(shortcut)
|
||||
x = self.act3(x)
|
||||
return x
|
||||
|
||||
|
||||
class PreBottleneck(nn.Module):
|
||||
""" RegNet Bottleneck
|
||||
|
||||
This is almost exactly the same as a ResNet Bottlneck. The main difference is the SE block is moved from
|
||||
after conv3 to after conv2. Otherwise, it's just redefining the arguments for groups/bottleneck channels.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, in_chs, out_chs, stride=1, dilation=(1, 1), bottle_ratio=1, group_size=1, se_ratio=0.25,
|
||||
downsample='conv1x1', linear_out=False, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d,
|
||||
drop_block=None, drop_path_rate=0.):
|
||||
super(PreBottleneck, self).__init__()
|
||||
norm_act_layer = get_norm_act_layer(norm_layer, act_layer)
|
||||
bottleneck_chs = int(round(out_chs * bottle_ratio))
|
||||
groups = bottleneck_chs // group_size
|
||||
|
||||
self.norm1 = norm_act_layer(in_chs)
|
||||
self.conv1 = create_conv2d(in_chs, bottleneck_chs, kernel_size=1)
|
||||
self.norm2 = norm_act_layer(bottleneck_chs)
|
||||
self.conv2 = create_conv2d(
|
||||
bottleneck_chs, bottleneck_chs, kernel_size=3, stride=stride, dilation=dilation[0], groups=groups)
|
||||
if se_ratio:
|
||||
se_channels = int(round(in_chs * se_ratio))
|
||||
self.se = SEModule(bottleneck_chs, rd_channels=se_channels, act_layer=act_layer)
|
||||
else:
|
||||
self.se = nn.Identity()
|
||||
self.norm3 = norm_act_layer(bottleneck_chs)
|
||||
self.conv3 = create_conv2d(bottleneck_chs, out_chs, kernel_size=1)
|
||||
self.downsample = create_shortcut(downsample, in_chs, out_chs, 1, stride, dilation, preact=True)
|
||||
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity()
|
||||
|
||||
def zero_init_last(self):
|
||||
pass
|
||||
|
||||
def forward(self, x):
|
||||
x = self.norm1(x)
|
||||
shortcut = x
|
||||
x = self.conv1(x)
|
||||
x = self.norm2(x)
|
||||
x = self.conv2(x)
|
||||
x = self.se(x)
|
||||
x = self.norm3(x)
|
||||
x = self.conv3(x)
|
||||
if self.downsample is not None:
|
||||
# NOTE stuck with downsample as the attr name due to weight compatibility
|
||||
# now represents the shortcut, no shortcut if None, and non-downsample shortcut == nn.Identity()
|
||||
x = self.drop_path(x) + self.downsample(shortcut)
|
||||
return x
|
||||
|
||||
|
||||
class RegStage(nn.Module):
|
||||
"""Stage (sequence of blocks w/ the same output shape)."""
|
||||
|
||||
def __init__(
|
||||
self, depth, in_chs, out_chs, stride, dilation, bottle_ratio=1.0, group_size=8, block_fn=Bottleneck,
|
||||
se_ratio=0., downsample='conv1x1', linear_out=False, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d,
|
||||
drop_path_rates=None, drop_block=None):
|
||||
self, depth, in_chs, out_chs, stride, dilation,
|
||||
drop_path_rates=None, block_fn=Bottleneck, **block_kwargs):
|
||||
super(RegStage, self).__init__()
|
||||
block_kwargs = dict(
|
||||
bottle_ratio=bottle_ratio, group_size=group_size, se_ratio=se_ratio, downsample=downsample,
|
||||
linear_out=linear_out, act_layer=act_layer, norm_layer=norm_layer, drop_block=drop_block)
|
||||
first_dilation = 1 if dilation in (1, 2) else 2
|
||||
for i in range(depth):
|
||||
block_stride = stride if i == 0 else 1
|
||||
@ -291,30 +360,40 @@ class RegNet(nn.Module):
|
||||
|
||||
# Construct the stem
|
||||
stem_width = cfg.stem_width
|
||||
self.stem = ConvNormAct(in_chans, stem_width, 3, stride=2, act_layer=cfg.act_layer, norm_layer=cfg.norm_layer)
|
||||
na_args = dict(act_layer=cfg.act_layer, norm_layer=cfg.norm_layer)
|
||||
if cfg.preact:
|
||||
self.stem = create_conv2d(in_chans, stem_width, 3, stride=2)
|
||||
else:
|
||||
self.stem = ConvNormAct(in_chans, stem_width, 3, stride=2, **na_args)
|
||||
self.feature_info = [dict(num_chs=stem_width, reduction=2, module='stem')]
|
||||
|
||||
# Construct the stages
|
||||
prev_width = stem_width
|
||||
curr_stride = 2
|
||||
stage_params = self._get_stage_params(cfg, output_stride=output_stride, drop_path_rate=drop_path_rate)
|
||||
for i, stage_args in enumerate(stage_params):
|
||||
per_stage_args, common_args = self._get_stage_args(
|
||||
cfg, output_stride=output_stride, drop_path_rate=drop_path_rate)
|
||||
block_fn = PreBottleneck if cfg.preact else Bottleneck
|
||||
for i, stage_args in enumerate(per_stage_args):
|
||||
stage_name = "s{}".format(i + 1)
|
||||
self.add_module(stage_name, RegStage(
|
||||
in_chs=prev_width, se_ratio=cfg.se_ratio, downsample=cfg.downsample, linear_out=cfg.linear_out,
|
||||
act_layer=cfg.act_layer, norm_layer=cfg.norm_layer, **stage_args))
|
||||
self.add_module(stage_name, RegStage(in_chs=prev_width, block_fn=block_fn, **stage_args, **common_args))
|
||||
prev_width = stage_args['out_chs']
|
||||
curr_stride *= stage_args['stride']
|
||||
self.feature_info += [dict(num_chs=prev_width, reduction=curr_stride, module=stage_name)]
|
||||
|
||||
# Construct the head
|
||||
self.num_features = prev_width
|
||||
if cfg.num_features:
|
||||
self.final_conv = ConvNormAct(prev_width, cfg.num_features, kernel_size=1, **na_args)
|
||||
self.num_features = cfg.num_features
|
||||
else:
|
||||
final_act = cfg.linear_out or cfg.preact
|
||||
self.final_conv = get_act_layer(cfg.act_layer)() if final_act else nn.Identity()
|
||||
self.num_features = prev_width
|
||||
self.head = ClassifierHead(
|
||||
in_chs=prev_width, num_classes=num_classes, pool_type=global_pool, drop_rate=drop_rate)
|
||||
in_chs=self.num_features, num_classes=num_classes, pool_type=global_pool, drop_rate=drop_rate)
|
||||
|
||||
named_apply(partial(_init_weights, zero_init_last=zero_init_last), self)
|
||||
|
||||
def _get_stage_params(self, cfg: RegNetCfg, default_stride=2, output_stride=32, drop_path_rate=0.):
|
||||
def _get_stage_args(self, cfg: RegNetCfg, default_stride=2, output_stride=32, drop_path_rate=0.):
|
||||
# Generate RegNet ws per block
|
||||
widths, num_stages, _, _ = generate_regnet(cfg.wa, cfg.w0, cfg.wm, cfg.depth)
|
||||
|
||||
@ -341,12 +420,15 @@ class RegNet(nn.Module):
|
||||
|
||||
# Adjust the compatibility of ws and gws
|
||||
stage_widths, stage_groups = adjust_widths_groups_comp(stage_widths, stage_bottle_ratios, stage_groups)
|
||||
param_names = ['out_chs', 'stride', 'dilation', 'depth', 'bottle_ratio', 'group_size', 'drop_path_rates']
|
||||
stage_params = [
|
||||
dict(zip(param_names, params)) for params in
|
||||
arg_names = ['out_chs', 'stride', 'dilation', 'depth', 'bottle_ratio', 'group_size', 'drop_path_rates']
|
||||
per_stage_args = [
|
||||
dict(zip(arg_names, params)) for params in
|
||||
zip(stage_widths, stage_strides, stage_dilations, stage_depths, stage_bottle_ratios, stage_groups,
|
||||
stage_dpr)]
|
||||
return stage_params
|
||||
common_args = dict(
|
||||
downsample=cfg.downsample, se_ratio=cfg.se_ratio, linear_out=cfg.linear_out,
|
||||
act_layer=cfg.act_layer, norm_layer=cfg.norm_layer)
|
||||
return per_stage_args, common_args
|
||||
|
||||
def get_classifier(self):
|
||||
return self.head.fc
|
||||
@ -367,14 +449,16 @@ class RegNet(nn.Module):
|
||||
|
||||
def _init_weights(module, name='', zero_init_last=False):
|
||||
if isinstance(module, nn.Conv2d):
|
||||
nn.init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu')
|
||||
elif isinstance(module, nn.BatchNorm2d):
|
||||
nn.init.ones_(module.weight)
|
||||
nn.init.zeros_(module.bias)
|
||||
fan_out = module.kernel_size[0] * module.kernel_size[1] * module.out_channels
|
||||
fan_out //= module.groups
|
||||
module.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
||||
if module.bias is not None:
|
||||
module.bias.data.zero_()
|
||||
elif isinstance(module, nn.Linear):
|
||||
nn.init.normal_(module.weight, mean=0.0, std=0.01)
|
||||
nn.init.zeros_(module.bias)
|
||||
elif hasattr(module, 'zero_init_last'):
|
||||
if module.bias is not None:
|
||||
nn.init.zeros_(module.bias)
|
||||
elif zero_init_last and hasattr(module, 'zero_init_last'):
|
||||
module.zero_init_last()
|
||||
|
||||
|
||||
@ -545,13 +629,25 @@ def regnety_040s_gn(pretrained=False, **kwargs):
|
||||
return _create_regnet('regnety_040s_gn', pretrained, **kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def regnetv_040(pretrained=False, **kwargs):
|
||||
""""""
|
||||
return _create_regnet('regnetv_040', pretrained, **kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def regnetw_040(pretrained=False, **kwargs):
|
||||
""""""
|
||||
return _create_regnet('regnetw_040', pretrained, **kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
def regnetz_005(pretrained=False, **kwargs):
|
||||
"""RegNetZ-500MF
|
||||
NOTE: config found in https://github.com/facebookresearch/ClassyVision/blob/main/classy_vision/models/regnet.py
|
||||
but it's not clear it is equivalent to paper model as not detailed in the paper.
|
||||
"""
|
||||
return _create_regnet('regnetz_005', pretrained, **kwargs)
|
||||
return _create_regnet('regnetz_005', pretrained, zero_init_last=False, **kwargs)
|
||||
|
||||
|
||||
@register_model
|
||||
@ -560,4 +656,4 @@ def regnetz_040(pretrained=False, **kwargs):
|
||||
NOTE: config found in https://github.com/facebookresearch/ClassyVision/blob/main/classy_vision/models/regnet.py
|
||||
but it's not clear it is equivalent to paper model as not detailed in the paper.
|
||||
"""
|
||||
return _create_regnet('regnetz_040', pretrained, **kwargs)
|
||||
return _create_regnet('regnetz_040', pretrained, zero_init_last=False, **kwargs)
|
||||
|
Loading…
x
Reference in New Issue
Block a user