mirror of
https://github.com/huggingface/pytorch-image-models.git
synced 2025-06-03 15:01:08 +08:00
Merge pull request #2308 from huggingface/device_amp_cleanup
Cleanup some amp related behaviour to better support different (non-cuda) devices
This commit is contained in:
commit
5081b53e48
@ -32,13 +32,6 @@ try:
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
has_native_amp = False
|
||||
try:
|
||||
if getattr(torch.cuda.amp, 'autocast') is not None:
|
||||
has_native_amp = True
|
||||
except AttributeError:
|
||||
pass
|
||||
|
||||
try:
|
||||
from deepspeed.profiling.flops_profiler import get_model_profile
|
||||
has_deepspeed_profiling = True
|
||||
@ -242,7 +235,7 @@ class BenchmarkRunner:
|
||||
self.amp_dtype, self.model_dtype, self.data_dtype = resolve_precision(precision)
|
||||
self.channels_last = kwargs.pop('channels_last', False)
|
||||
if self.amp_dtype is not None:
|
||||
self.amp_autocast = partial(torch.cuda.amp.autocast, dtype=self.amp_dtype)
|
||||
self.amp_autocast = partial(torch.amp.autocast, device_type=device, dtype=self.amp_dtype)
|
||||
else:
|
||||
self.amp_autocast = suppress
|
||||
|
||||
|
@ -28,13 +28,6 @@ try:
|
||||
except ImportError:
|
||||
has_apex = False
|
||||
|
||||
has_native_amp = False
|
||||
try:
|
||||
if getattr(torch.cuda.amp, 'autocast') is not None:
|
||||
has_native_amp = True
|
||||
except AttributeError:
|
||||
pass
|
||||
|
||||
try:
|
||||
from functorch.compile import memory_efficient_fusion
|
||||
has_functorch = True
|
||||
@ -170,7 +163,6 @@ def main():
|
||||
# resolve AMP arguments based on PyTorch / Apex availability
|
||||
amp_autocast = suppress
|
||||
if args.amp:
|
||||
assert has_native_amp, 'Please update PyTorch to a version with native AMP (or use APEX).'
|
||||
assert args.amp_dtype in ('float16', 'bfloat16')
|
||||
amp_dtype = torch.bfloat16 if args.amp_dtype == 'bfloat16' else torch.float16
|
||||
amp_autocast = partial(torch.autocast, device_type=device.type, dtype=amp_dtype)
|
||||
|
@ -113,13 +113,17 @@ class PrefetchLoader:
|
||||
)
|
||||
else:
|
||||
self.random_erasing = None
|
||||
self.is_cuda = torch.cuda.is_available() and device.type == 'cuda'
|
||||
self.is_cuda = device.type == 'cuda' and torch.cuda.is_available()
|
||||
self.is_npu = device.type == 'npu' and torch.npu.is_available()
|
||||
|
||||
def __iter__(self):
|
||||
first = True
|
||||
if self.is_cuda:
|
||||
stream = torch.cuda.Stream()
|
||||
stream_context = partial(torch.cuda.stream, stream=stream)
|
||||
elif self.is_npu:
|
||||
stream = torch.npu.Stream()
|
||||
stream_context = partial(torch.npu.stream, stream=stream)
|
||||
else:
|
||||
stream = None
|
||||
stream_context = suppress
|
||||
@ -139,7 +143,10 @@ class PrefetchLoader:
|
||||
first = False
|
||||
|
||||
if stream is not None:
|
||||
torch.cuda.current_stream().wait_stream(stream)
|
||||
if self.is_cuda:
|
||||
torch.cuda.current_stream().wait_stream(stream)
|
||||
elif self.is_npu:
|
||||
torch.npu.current_stream().wait_stream(stream)
|
||||
|
||||
input = next_input
|
||||
target = next_target
|
||||
|
@ -28,6 +28,30 @@ except ImportError:
|
||||
_USE_FAST_NORM = False # defaulting to False for now
|
||||
|
||||
|
||||
def get_autocast_dtype(device: str = 'cuda'):
|
||||
try:
|
||||
return torch.get_autocast_dtype(device)
|
||||
except (AttributeError, TypeError):
|
||||
# dispatch to older device specific fns, only covering cuda/cpu devices here
|
||||
if device == 'cpu':
|
||||
return torch.get_autocast_cpu_dtype()
|
||||
else:
|
||||
assert device == 'cuda'
|
||||
return torch.get_autocast_gpu_dtype()
|
||||
|
||||
|
||||
def is_autocast_enabled(device: str = 'cuda'):
|
||||
try:
|
||||
return torch.is_autocast_enabled(device)
|
||||
except TypeError:
|
||||
# dispatch to older device specific fns, only covering cuda/cpu devices here
|
||||
if device == 'cpu':
|
||||
return torch.is_autocast_cpu_enabled()
|
||||
else:
|
||||
assert device == 'cuda'
|
||||
return torch.is_autocast_enabled() # defaults cuda (only cuda on older pytorch)
|
||||
|
||||
|
||||
def is_fast_norm():
|
||||
return _USE_FAST_NORM
|
||||
|
||||
@ -48,14 +72,14 @@ def fast_group_norm(
|
||||
# currently cannot use is_autocast_enabled within torchscript
|
||||
return F.group_norm(x, num_groups, weight, bias, eps)
|
||||
|
||||
if torch.is_autocast_enabled():
|
||||
if is_autocast_enabled(x.device.type):
|
||||
# normally native AMP casts GN inputs to float32
|
||||
# here we use the low precision autocast dtype
|
||||
# FIXME what to do re CPU autocast?
|
||||
dt = torch.get_autocast_gpu_dtype()
|
||||
dt = get_autocast_dtype(x.device.type)
|
||||
x, weight, bias = x.to(dt), weight.to(dt), bias.to(dt) if bias is not None else None
|
||||
|
||||
with torch.cuda.amp.autocast(enabled=False):
|
||||
with torch.amp.autocast(device_type=x.device.type, enabled=False):
|
||||
return F.group_norm(x, num_groups, weight, bias, eps)
|
||||
|
||||
|
||||
@ -73,14 +97,14 @@ def fast_layer_norm(
|
||||
if has_apex:
|
||||
return fused_layer_norm_affine(x, weight, bias, normalized_shape, eps)
|
||||
|
||||
if torch.is_autocast_enabled():
|
||||
if is_autocast_enabled(x.device.type):
|
||||
# normally native AMP casts LN inputs to float32
|
||||
# apex LN does not, this is behaving like Apex
|
||||
dt = torch.get_autocast_gpu_dtype()
|
||||
dt = get_autocast_dtype(x.device.type)
|
||||
# FIXME what to do re CPU autocast?
|
||||
x, weight, bias = x.to(dt), weight.to(dt), bias.to(dt) if bias is not None else None
|
||||
|
||||
with torch.cuda.amp.autocast(enabled=False):
|
||||
with torch.amp.autocast(device_type=x.device.type, enabled=False):
|
||||
return F.layer_norm(x, normalized_shape, weight, bias, eps)
|
||||
|
||||
|
||||
|
@ -46,8 +46,11 @@ class ApexScaler:
|
||||
class NativeScaler:
|
||||
state_dict_key = "amp_scaler"
|
||||
|
||||
def __init__(self):
|
||||
self._scaler = torch.cuda.amp.GradScaler()
|
||||
def __init__(self, device='cuda'):
|
||||
try:
|
||||
self._scaler = torch.amp.GradScaler(device=device)
|
||||
except (AttributeError, TypeError) as e:
|
||||
self._scaler = torch.cuda.amp.GradScaler()
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
|
@ -116,6 +116,7 @@ def init_distributed_device_so(
|
||||
"xpu": "ccl",
|
||||
"hpu": "hccl",
|
||||
"cuda": "nccl",
|
||||
"npu": "hccl",
|
||||
}
|
||||
dist_backend = dist_backends.get(device_type, 'gloo')
|
||||
dist_url = dist_url or 'env://'
|
||||
@ -159,6 +160,8 @@ def init_distributed_device_so(
|
||||
|
||||
if device_type == 'cuda':
|
||||
assert torch.cuda.is_available(), f'CUDA is not available but {device} was specified.'
|
||||
if device_type == 'npu':
|
||||
assert torch.npu.is_available(), f'Ascend NPU is not available but {device} was specified.'
|
||||
|
||||
if distributed and device != 'cpu':
|
||||
# Ignore manually specified device index in distributed mode and
|
||||
|
27
train.py
27
train.py
@ -48,12 +48,6 @@ try:
|
||||
except ImportError:
|
||||
has_apex = False
|
||||
|
||||
has_native_amp = False
|
||||
try:
|
||||
if getattr(torch.cuda.amp, 'autocast') is not None:
|
||||
has_native_amp = True
|
||||
except AttributeError:
|
||||
pass
|
||||
|
||||
try:
|
||||
import wandb
|
||||
@ -442,7 +436,6 @@ def main():
|
||||
use_amp = 'apex'
|
||||
assert args.amp_dtype == 'float16'
|
||||
else:
|
||||
assert has_native_amp, 'Please update PyTorch to a version with native AMP (or use APEX).'
|
||||
use_amp = 'native'
|
||||
assert args.amp_dtype in ('float16', 'bfloat16')
|
||||
if args.amp_dtype == 'bfloat16':
|
||||
@ -572,15 +565,10 @@ def main():
|
||||
if utils.is_primary(args):
|
||||
_logger.info('Using NVIDIA APEX AMP. Training in mixed precision.')
|
||||
elif use_amp == 'native':
|
||||
try:
|
||||
amp_autocast = partial(torch.autocast, device_type=device.type, dtype=amp_dtype)
|
||||
except (AttributeError, TypeError):
|
||||
# fallback to CUDA only AMP for PyTorch < 1.10
|
||||
assert device.type == 'cuda'
|
||||
amp_autocast = torch.cuda.amp.autocast
|
||||
if device.type == 'cuda' and amp_dtype == torch.float16:
|
||||
amp_autocast = partial(torch.autocast, device_type=device.type, dtype=amp_dtype)
|
||||
if device.type in ('cuda',) and amp_dtype == torch.float16:
|
||||
# loss scaler only used for float16 (half) dtype, bfloat16 does not need it
|
||||
loss_scaler = NativeScaler()
|
||||
loss_scaler = NativeScaler(device=device.type)
|
||||
if utils.is_primary(args):
|
||||
_logger.info('Using native Torch AMP. Training in mixed precision.')
|
||||
else:
|
||||
@ -1054,8 +1042,11 @@ def train_one_epoch(
|
||||
if model_ema is not None:
|
||||
model_ema.update(model, step=num_updates)
|
||||
|
||||
if args.synchronize_step and device.type == 'cuda':
|
||||
torch.cuda.synchronize()
|
||||
if args.synchronize_step:
|
||||
if device.type == 'cuda':
|
||||
torch.cuda.synchronize()
|
||||
elif device.type == 'npu':
|
||||
torch.npu.synchronize()
|
||||
time_now = time.time()
|
||||
update_time_m.update(time.time() - update_start_time)
|
||||
update_start_time = time_now
|
||||
@ -1155,6 +1146,8 @@ def validate(
|
||||
|
||||
if device.type == 'cuda':
|
||||
torch.cuda.synchronize()
|
||||
elif device.type == "npu":
|
||||
torch.npu.synchronize()
|
||||
|
||||
losses_m.update(reduced_loss.item(), input.size(0))
|
||||
top1_m.update(acc1.item(), output.size(0))
|
||||
|
12
validate.py
12
validate.py
@ -34,13 +34,6 @@ try:
|
||||
except ImportError:
|
||||
has_apex = False
|
||||
|
||||
has_native_amp = False
|
||||
try:
|
||||
if getattr(torch.cuda.amp, 'autocast') is not None:
|
||||
has_native_amp = True
|
||||
except AttributeError:
|
||||
pass
|
||||
|
||||
try:
|
||||
from functorch.compile import memory_efficient_fusion
|
||||
has_functorch = True
|
||||
@ -183,7 +176,6 @@ def validate(args):
|
||||
use_amp = 'apex'
|
||||
_logger.info('Validating in mixed precision with NVIDIA APEX AMP.')
|
||||
else:
|
||||
assert has_native_amp, 'Please update PyTorch to a version with native AMP (or use APEX).'
|
||||
assert args.amp_dtype in ('float16', 'bfloat16')
|
||||
use_amp = 'native'
|
||||
amp_dtype = torch.bfloat16 if args.amp_dtype == 'bfloat16' else torch.float16
|
||||
@ -395,8 +387,10 @@ def _try_run(args, initial_batch_size):
|
||||
while batch_size:
|
||||
args.batch_size = batch_size * args.num_gpu # multiply by num-gpu for DataParallel case
|
||||
try:
|
||||
if torch.cuda.is_available() and 'cuda' in args.device:
|
||||
if 'cuda' in args.device and torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
elif "npu" in args.device and torch.npu.is_available():
|
||||
torch.npu.empty_cache()
|
||||
results = validate(args)
|
||||
return results
|
||||
except RuntimeError as e:
|
||||
|
Loading…
x
Reference in New Issue
Block a user