diff --git a/timm/models/byobnet.py b/timm/models/byobnet.py index d05735d1..d4dfd6c9 100644 --- a/timm/models/byobnet.py +++ b/timm/models/byobnet.py @@ -261,8 +261,9 @@ class BasicBlock(nn.Module): def forward(self, x): shortcut = x x = self.conv1_kxk(x) - x = self.conv2_kxk(x) x = self.attn(x) + x = self.conv2_kxk(x) + x = self.attn_last(x) x = self.drop_path(x) if self.shortcut is not None: x = x + self.shortcut(shortcut) @@ -439,7 +440,6 @@ class EdgeBlock(nn.Module): downsample, in_chs, out_chs, stride=stride, dilation=dilation, apply_act=False, layers=layers, ) - self.conv1_kxk = layers.conv_norm_act( in_chs, mid_chs, kernel_size, stride=stride, dilation=dilation[0], groups=groups, drop_layer=drop_block, @@ -1835,16 +1835,19 @@ model_cfgs = dict( stem_chs=64, ), - test_tiny_resnet=ByoModelCfg( + test_byobnet=ByoModelCfg( blocks=( - ByoBlockCfg(type='basic', d=1, c=24, s=1, gs=1, br=0.25), - ByoBlockCfg(type='basic', d=1, c=32, s=2, gs=1, br=0.25), - ByoBlockCfg(type='basic', d=1, c=64, s=2, gs=1, br=0.25), - ByoBlockCfg(type='basic', d=1, c=128, s=2, gs=1, br=0.25), + ByoBlockCfg(type='edge', d=1, c=32, s=2, gs=0, br=0.5), + ByoBlockCfg(type='dark', d=1, c=64, s=2, gs=0, br=0.5), + ByoBlockCfg(type='basic', d=1, c=128, s=2, gs=32, br=0.25), + ByoBlockCfg(type='bottle', d=1, c=256, s=2, gs=64, br=0.25), ), - stem_chs=32, - stem_pool='maxpool', + stem_chs=24, + downsample='avg', + stem_pool='', act_layer='relu', + attn_layer='se', + attn_kwargs=dict(rd_ratio=0.25), ), ) @@ -2048,7 +2051,7 @@ default_cfgs = generate_default_cfgs({ first_conv=('stem.conv_kxk.0.conv', 'stem.conv_scale.conv'), ), - 'test_tiny_byobnet.untrained': _cfgr( + 'test_byobnet.untrained': _cfgr( # hf_hub_id='timm/', input_size=(3, 160, 160), crop_pct=0.875, pool_size=(5, 5), ), @@ -2357,7 +2360,7 @@ def mobileone_s4(pretrained=False, **kwargs) -> ByobNet: @register_model -def test_tiny_byobnet(pretrained=False, **kwargs) -> ByobNet: +def test_byobnet(pretrained=False, **kwargs) -> ByobNet: """ Minimal test ResNet (BYOB based) model. """ - return _create_byobnet('test_tiny_byobnet', pretrained=pretrained, **kwargs) + return _create_byobnet('test_byobnet', pretrained=pretrained, **kwargs) diff --git a/timm/models/efficientnet.py b/timm/models/efficientnet.py index 57efb907..fe397b05 100644 --- a/timm/models/efficientnet.py +++ b/timm/models/efficientnet.py @@ -1610,7 +1610,7 @@ default_cfgs = generate_default_cfgs({ url='https://github.com/huawei-noah/CV-Backbones/releases/download/v1.2.0/tinynet_e.pth', hf_hub_id='timm/'), - "test_tiny_efficientnet.untrained": _cfg( + "test_efficientnet.untrained": _cfg( # hf_hub_id='timm/' input_size=(3, 160, 160), pool_size=(5, 5)), }) @@ -2540,8 +2540,8 @@ def tinynet_e(pretrained=False, **kwargs) -> EfficientNet: @register_model -def test_tiny_efficientnet(pretrained=False, **kwargs) -> EfficientNet: - model = _gen_test_efficientnet('test_tiny_efficientnet', pretrained=pretrained, **kwargs) +def test_efficientnet(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_test_efficientnet('test_efficientnet', pretrained=pretrained, **kwargs) return model diff --git a/timm/models/vision_transformer.py b/timm/models/vision_transformer.py index a8bc450f..bcb7059e 100644 --- a/timm/models/vision_transformer.py +++ b/timm/models/vision_transformer.py @@ -1937,7 +1937,7 @@ default_cfgs = { 'vit_so150m_patch16_reg4_map_256.untrained': _cfg( input_size=(3, 256, 256)), - 'test_tiny_vit.untrained': _cfg( + 'test_vit.untrained': _cfg( input_size=(3, 160, 160), crop_pct=0.875), } @@ -3110,11 +3110,11 @@ def vit_so150m_patch16_reg4_gap_256(pretrained: bool = False, **kwargs) -> Visio @register_model -def test_tiny_vit(pretrained: bool = False, **kwargs) -> VisionTransformer: - """ ViT-TestTiny +def test_vit(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT Test """ - model_args = dict(patch_size=16, embed_dim=64, depth=4, num_heads=1, mlp_ratio=3) - model = _create_vision_transformer('test_tiny_vit', pretrained=pretrained, **dict(model_args, **kwargs)) + model_args = dict(patch_size=16, embed_dim=64, depth=6, num_heads=2, mlp_ratio=3) + model = _create_vision_transformer('test_vit', pretrained=pretrained, **dict(model_args, **kwargs)) return model