mirror of
https://github.com/huggingface/pytorch-image-models.git
synced 2025-06-03 15:01:08 +08:00
[WIP] Add ResNet-RS models (#554)
* Add ResNet-RS models * Only include resnet-rs changes * remove whitespace diff * EOF newline * Update time * increase time * Add first conv * Try running only resnetv2_101x1_bitm on Linux runner * Add to exclude filter * Run test_model_forward_features for all * Add to exclude ftrs * back to defaults * only run test_forward_features * run all tests * Run all tests * Add bigger resnetrs to model filters to fix Github CLI * Remove resnetv2_101x1_bitm from exclude feat features * Remove hardcoded values * Make sure reduction ratio in resnetrs is 0.25 * There is no bias in replaced maxpool so remove it
This commit is contained in:
parent
9cc7dda6e5
commit
560eae38f5
@ -22,8 +22,9 @@ NUM_NON_STD = len(NON_STD_FILTERS)
|
|||||||
if 'GITHUB_ACTIONS' in os.environ: # and 'Linux' in platform.system():
|
if 'GITHUB_ACTIONS' in os.environ: # and 'Linux' in platform.system():
|
||||||
# GitHub Linux runner is slower and hits memory limits sooner than MacOS, exclude bigger models
|
# GitHub Linux runner is slower and hits memory limits sooner than MacOS, exclude bigger models
|
||||||
EXCLUDE_FILTERS = [
|
EXCLUDE_FILTERS = [
|
||||||
'*efficientnet_l2*', '*resnext101_32x48d', '*in21k', '*152x4_bitm', '*101x3_bitm',
|
'*efficientnet_l2*', '*resnext101_32x48d', '*in21k', '*152x4_bitm',
|
||||||
'*nfnet_f3*', '*nfnet_f4*', '*nfnet_f5*', '*nfnet_f6*', '*nfnet_f7*'] + NON_STD_FILTERS
|
'*nfnet_f3*', '*nfnet_f4*', '*nfnet_f5*', '*nfnet_f6*', '*nfnet_f7*',
|
||||||
|
'*resnetrs200*', '*resnetrs270*', '*resnetrs350*', '*resnetrs420*'] + NON_STD_FILTERS
|
||||||
else:
|
else:
|
||||||
EXCLUDE_FILTERS = NON_STD_FILTERS
|
EXCLUDE_FILTERS = NON_STD_FILTERS
|
||||||
|
|
||||||
|
@ -236,7 +236,23 @@ default_cfgs = {
|
|||||||
interpolation='bicubic'),
|
interpolation='bicubic'),
|
||||||
'resnetblur50': _cfg(
|
'resnetblur50': _cfg(
|
||||||
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnetblur50-84f4748f.pth',
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnetblur50-84f4748f.pth',
|
||||||
interpolation='bicubic')
|
interpolation='bicubic'),
|
||||||
|
|
||||||
|
# ResNet-RS models
|
||||||
|
'resnetrs50': _cfg(
|
||||||
|
interpolation='bicubic', first_conv='conv1.0'),
|
||||||
|
'resnetrs101': _cfg(
|
||||||
|
interpolation='bicubic', first_conv='conv1.0'),
|
||||||
|
'resnetrs152': _cfg(
|
||||||
|
interpolation='bicubic', first_conv='conv1.0'),
|
||||||
|
'resnetrs200': _cfg(
|
||||||
|
interpolation='bicubic', first_conv='conv1.0'),
|
||||||
|
'resnetrs270': _cfg(
|
||||||
|
interpolation='bicubic', first_conv='conv1.0'),
|
||||||
|
'resnetrs350': _cfg(
|
||||||
|
interpolation='bicubic', first_conv='conv1.0'),
|
||||||
|
'resnetrs420': _cfg(
|
||||||
|
interpolation='bicubic', first_conv='conv1.0'),
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
@ -318,7 +334,7 @@ class Bottleneck(nn.Module):
|
|||||||
|
|
||||||
def __init__(self, inplanes, planes, stride=1, downsample=None, cardinality=1, base_width=64,
|
def __init__(self, inplanes, planes, stride=1, downsample=None, cardinality=1, base_width=64,
|
||||||
reduce_first=1, dilation=1, first_dilation=None, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d,
|
reduce_first=1, dilation=1, first_dilation=None, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d,
|
||||||
attn_layer=None, aa_layer=None, drop_block=None, drop_path=None):
|
attn_layer=None, aa_layer=None, drop_block=None, drop_path=None, **kwargs):
|
||||||
super(Bottleneck, self).__init__()
|
super(Bottleneck, self).__init__()
|
||||||
|
|
||||||
width = int(math.floor(planes * (base_width / 64)) * cardinality)
|
width = int(math.floor(planes * (base_width / 64)) * cardinality)
|
||||||
@ -341,7 +357,7 @@ class Bottleneck(nn.Module):
|
|||||||
self.conv3 = nn.Conv2d(width, outplanes, kernel_size=1, bias=False)
|
self.conv3 = nn.Conv2d(width, outplanes, kernel_size=1, bias=False)
|
||||||
self.bn3 = norm_layer(outplanes)
|
self.bn3 = norm_layer(outplanes)
|
||||||
|
|
||||||
self.se = create_attn(attn_layer, outplanes)
|
self.se = create_attn(attn_layer, outplanes, **kwargs)
|
||||||
|
|
||||||
self.act3 = act_layer(inplace=True)
|
self.act3 = act_layer(inplace=True)
|
||||||
self.downsample = downsample
|
self.downsample = downsample
|
||||||
@ -545,11 +561,12 @@ class ResNet(nn.Module):
|
|||||||
cardinality=1, base_width=64, stem_width=64, stem_type='',
|
cardinality=1, base_width=64, stem_width=64, stem_type='',
|
||||||
output_stride=32, block_reduce_first=1, down_kernel_size=1, avg_down=False,
|
output_stride=32, block_reduce_first=1, down_kernel_size=1, avg_down=False,
|
||||||
act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, aa_layer=None, drop_rate=0.0, drop_path_rate=0.,
|
act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, aa_layer=None, drop_rate=0.0, drop_path_rate=0.,
|
||||||
drop_block_rate=0., global_pool='avg', zero_init_last_bn=True, block_args=None):
|
drop_block_rate=0., global_pool='avg', zero_init_last_bn=True, block_args=None, replace_stem_max_pool=False):
|
||||||
block_args = block_args or dict()
|
block_args = block_args or dict()
|
||||||
assert output_stride in (8, 16, 32)
|
assert output_stride in (8, 16, 32)
|
||||||
self.num_classes = num_classes
|
self.num_classes = num_classes
|
||||||
self.drop_rate = drop_rate
|
self.drop_rate = drop_rate
|
||||||
|
self.replace_stem_max_pool = replace_stem_max_pool
|
||||||
super(ResNet, self).__init__()
|
super(ResNet, self).__init__()
|
||||||
|
|
||||||
# Stem
|
# Stem
|
||||||
@ -574,12 +591,19 @@ class ResNet(nn.Module):
|
|||||||
self.feature_info = [dict(num_chs=inplanes, reduction=2, module='act1')]
|
self.feature_info = [dict(num_chs=inplanes, reduction=2, module='act1')]
|
||||||
|
|
||||||
# Stem Pooling
|
# Stem Pooling
|
||||||
if aa_layer is not None:
|
if not self.replace_stem_max_pool:
|
||||||
self.maxpool = nn.Sequential(*[
|
if aa_layer is not None:
|
||||||
nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
|
self.maxpool = nn.Sequential(*[
|
||||||
aa_layer(channels=inplanes, stride=2)])
|
nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
|
||||||
|
aa_layer(channels=inplanes, stride=2)])
|
||||||
|
else:
|
||||||
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
||||||
else:
|
else:
|
||||||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
self.maxpool = nn.Sequential(*[
|
||||||
|
nn.Conv2d(inplanes, inplanes, 3, stride=2, padding=1, bias=False),
|
||||||
|
norm_layer(inplanes),
|
||||||
|
act_layer(inplace=True)
|
||||||
|
])
|
||||||
|
|
||||||
# Feature Blocks
|
# Feature Blocks
|
||||||
channels = [64, 128, 256, 512]
|
channels = [64, 128, 256, 512]
|
||||||
@ -1065,6 +1089,63 @@ def ecaresnet50d(pretrained=False, **kwargs):
|
|||||||
return _create_resnet('ecaresnet50d', pretrained, **model_args)
|
return _create_resnet('ecaresnet50d', pretrained, **model_args)
|
||||||
|
|
||||||
|
|
||||||
|
@register_model
|
||||||
|
def resnetrs50(pretrained=False, **kwargs):
|
||||||
|
model_args = dict(
|
||||||
|
block=Bottleneck, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep', replace_stem_max_pool=True,
|
||||||
|
avg_down=True, block_args=dict(attn_layer='se', reduction_ratio=0.25), **kwargs)
|
||||||
|
return _create_resnet('resnetrs50', pretrained, **model_args)
|
||||||
|
|
||||||
|
|
||||||
|
@register_model
|
||||||
|
def resnetrs101(pretrained=False, **kwargs):
|
||||||
|
model_args = dict(
|
||||||
|
block=Bottleneck, layers=[3, 4, 23, 3], stem_width=32, stem_type='deep', replace_stem_max_pool=True,
|
||||||
|
avg_down=True, block_args=dict(attn_layer='se', reduction_ratio=0.25), **kwargs)
|
||||||
|
return _create_resnet('resnetrs101', pretrained, **model_args)
|
||||||
|
|
||||||
|
|
||||||
|
@register_model
|
||||||
|
def resnetrs152(pretrained=False, **kwargs):
|
||||||
|
model_args = dict(
|
||||||
|
block=Bottleneck, layers=[3, 8, 36, 3], stem_width=32, stem_type='deep', replace_stem_max_pool=True,
|
||||||
|
avg_down=True, block_args=dict(attn_layer='se', reduction_ratio=0.25), **kwargs)
|
||||||
|
return _create_resnet('resnetrs152', pretrained, **model_args)
|
||||||
|
|
||||||
|
|
||||||
|
@register_model
|
||||||
|
def resnetrs200(pretrained=False, **kwargs):
|
||||||
|
model_args = dict(
|
||||||
|
block=Bottleneck, layers=[3, 24, 36, 3], stem_width=32, stem_type='deep', replace_stem_max_pool=True,
|
||||||
|
avg_down=True, block_args=dict(attn_layer='se', reduction_ratio=0.25), **kwargs)
|
||||||
|
return _create_resnet('resnetrs200', pretrained, **model_args)
|
||||||
|
|
||||||
|
|
||||||
|
@register_model
|
||||||
|
def resnetrs270(pretrained=False, **kwargs):
|
||||||
|
model_args = dict(
|
||||||
|
block=Bottleneck, layers=[4, 29, 53, 4], stem_width=32, stem_type='deep', replace_stem_max_pool=True,
|
||||||
|
avg_down=True, block_args=dict(attn_layer='se', reduction_ratio=0.25), **kwargs)
|
||||||
|
return _create_resnet('resnetrs270', pretrained, **model_args)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@register_model
|
||||||
|
def resnetrs350(pretrained=False, **kwargs):
|
||||||
|
model_args = dict(
|
||||||
|
block=Bottleneck, layers=[4, 36, 72, 4], stem_width=32, stem_type='deep', replace_stem_max_pool=True,
|
||||||
|
avg_down=True, block_args=dict(attn_layer='se', reduction_ratio=0.25), **kwargs)
|
||||||
|
return _create_resnet('resnetrs350', pretrained, **model_args)
|
||||||
|
|
||||||
|
|
||||||
|
@register_model
|
||||||
|
def resnetrs420(pretrained=False, **kwargs):
|
||||||
|
model_args = dict(
|
||||||
|
block=Bottleneck, layers=[4, 44, 87, 4], stem_width=32, stem_type='deep', replace_stem_max_pool=True,
|
||||||
|
avg_down=True, block_args=dict(attn_layer='se', reduction_ratio=0.25), **kwargs)
|
||||||
|
return _create_resnet('resnetrs420', pretrained, **model_args)
|
||||||
|
|
||||||
|
|
||||||
@register_model
|
@register_model
|
||||||
def ecaresnet50d_pruned(pretrained=False, **kwargs):
|
def ecaresnet50d_pruned(pretrained=False, **kwargs):
|
||||||
"""Constructs a ResNet-50-D model pruned with eca.
|
"""Constructs a ResNet-50-D model pruned with eca.
|
||||||
|
Loading…
x
Reference in New Issue
Block a user