mirror of
https://github.com/huggingface/pytorch-image-models.git
synced 2025-06-03 15:01:08 +08:00
Fix some formatting in utils/model.py
This commit is contained in:
parent
0fe4fd3f1f
commit
57992509f9
@ -2,11 +2,9 @@
|
||||
|
||||
Hacked together by / Copyright 2020 Ross Wightman
|
||||
"""
|
||||
from logging import root
|
||||
from typing import Sequence
|
||||
|
||||
import torch
|
||||
import fnmatch
|
||||
|
||||
import torch
|
||||
from torchvision.ops.misc import FrozenBatchNorm2d
|
||||
|
||||
from .model_ema import ModelEma
|
||||
@ -23,19 +21,22 @@ def get_state_dict(model, unwrap_fn=unwrap_model):
|
||||
return unwrap_fn(model).state_dict()
|
||||
|
||||
|
||||
def avg_sq_ch_mean(model, input, output):
|
||||
"calculate average channel square mean of output activations"
|
||||
return torch.mean(output.mean(axis=[0,2,3])**2).item()
|
||||
def avg_sq_ch_mean(model, input, output):
|
||||
""" calculate average channel square mean of output activations
|
||||
"""
|
||||
return torch.mean(output.mean(axis=[0, 2, 3]) ** 2).item()
|
||||
|
||||
|
||||
def avg_ch_var(model, input, output):
|
||||
"calculate average channel variance of output activations"
|
||||
return torch.mean(output.var(axis=[0,2,3])).item()\
|
||||
def avg_ch_var(model, input, output):
|
||||
""" calculate average channel variance of output activations
|
||||
"""
|
||||
return torch.mean(output.var(axis=[0, 2, 3])).item()
|
||||
|
||||
|
||||
def avg_ch_var_residual(model, input, output):
|
||||
"calculate average channel variance of output activations"
|
||||
return torch.mean(output.var(axis=[0,2,3])).item()
|
||||
def avg_ch_var_residual(model, input, output):
|
||||
""" calculate average channel variance of output activations
|
||||
"""
|
||||
return torch.mean(output.var(axis=[0, 2, 3])).item()
|
||||
|
||||
|
||||
class ActivationStatsHook:
|
||||
@ -64,15 +65,16 @@ class ActivationStatsHook:
|
||||
raise ValueError("Please provide `hook_fns` for each `hook_fn_locs`, \
|
||||
their lengths are different.")
|
||||
self.stats = dict((hook_fn.__name__, []) for hook_fn in hook_fns)
|
||||
for hook_fn_loc, hook_fn in zip(hook_fn_locs, hook_fns):
|
||||
for hook_fn_loc, hook_fn in zip(hook_fn_locs, hook_fns):
|
||||
self.register_hook(hook_fn_loc, hook_fn)
|
||||
|
||||
def _create_hook(self, hook_fn):
|
||||
def append_activation_stats(module, input, output):
|
||||
out = hook_fn(module, input, output)
|
||||
self.stats[hook_fn.__name__].append(out)
|
||||
|
||||
return append_activation_stats
|
||||
|
||||
|
||||
def register_hook(self, hook_fn_loc, hook_fn):
|
||||
for name, module in self.model.named_modules():
|
||||
if not fnmatch.fnmatch(name, hook_fn_loc):
|
||||
@ -80,17 +82,18 @@ class ActivationStatsHook:
|
||||
module.register_forward_hook(self._create_hook(hook_fn))
|
||||
|
||||
|
||||
def extract_spp_stats(model,
|
||||
hook_fn_locs,
|
||||
hook_fns,
|
||||
input_shape=[8, 3, 224, 224]):
|
||||
def extract_spp_stats(
|
||||
model,
|
||||
hook_fn_locs,
|
||||
hook_fns,
|
||||
input_shape=[8, 3, 224, 224]):
|
||||
"""Extract average square channel mean and variance of activations during
|
||||
forward pass to plot Signal Propogation Plots (SPP).
|
||||
|
||||
Paper: https://arxiv.org/abs/2101.08692
|
||||
|
||||
Example Usage: https://gist.github.com/amaarora/6e56942fcb46e67ba203f3009b30d950
|
||||
"""
|
||||
"""
|
||||
x = torch.normal(0., 1., input_shape)
|
||||
hook = ActivationStatsHook(model, hook_fn_locs=hook_fn_locs, hook_fns=hook_fns)
|
||||
_ = model(x)
|
||||
@ -188,7 +191,7 @@ def _freeze_unfreeze(root_module, submodules=[], include_bn_running_stats=True,
|
||||
named_modules = submodules
|
||||
submodules = [root_module.get_submodule(m) for m in submodules]
|
||||
|
||||
if not(len(submodules)):
|
||||
if not len(submodules):
|
||||
named_modules, submodules = list(zip(*root_module.named_children()))
|
||||
|
||||
for n, m in zip(named_modules, submodules):
|
||||
@ -203,13 +206,14 @@ def _freeze_unfreeze(root_module, submodules=[], include_bn_running_stats=True,
|
||||
module.get_submodule(split[0]).add_module(split[1], submodule)
|
||||
else:
|
||||
module.add_module(name, submodule)
|
||||
|
||||
# Freeze batch norm
|
||||
if mode == 'freeze':
|
||||
res = freeze_batch_norm_2d(m)
|
||||
# It's possible that `m` is a type of BatchNorm in itself, in which case `unfreeze_batch_norm_2d` won't
|
||||
# convert it in place, but will return the converted result. In this case `res` holds the converted
|
||||
# result and we may try to re-assign the named module
|
||||
if isinstance(m, (torch.nn.modules.batchnorm.BatchNorm2d, torch.nn.modules.batchnorm.SyncBatchNorm)):
|
||||
if isinstance(m, (torch.nn.modules.batchnorm.BatchNorm2d, torch.nn.modules.batchnorm.SyncBatchNorm)):
|
||||
_add_submodule(root_module, n, res)
|
||||
# Unfreeze batch norm
|
||||
else:
|
||||
@ -267,4 +271,3 @@ def unfreeze(root_module, submodules=[], include_bn_running_stats=True):
|
||||
See example in docstring for `freeze`.
|
||||
"""
|
||||
_freeze_unfreeze(root_module, submodules, include_bn_running_stats=include_bn_running_stats, mode="unfreeze")
|
||||
|
Loading…
x
Reference in New Issue
Block a user