convnext zepto, rmsnorm experiments

This commit is contained in:
Ross Wightman 2024-09-18 12:26:48 -07:00
parent e3242a5258
commit 5d7bd2973e
4 changed files with 88 additions and 9 deletions

View File

@ -34,7 +34,7 @@ from .linear import Linear
from .mixed_conv2d import MixedConv2d
from .mlp import Mlp, GluMlp, GatedMlp, SwiGLU, SwiGLUPacked, ConvMlp, GlobalResponseNormMlp
from .non_local_attn import NonLocalAttn, BatNonLocalAttn
from .norm import GroupNorm, GroupNorm1, LayerNorm, LayerNorm2d, RmsNorm
from .norm import GroupNorm, GroupNorm1, LayerNorm, LayerNorm2d, RmsNorm, RmsNorm2d
from .norm_act import BatchNormAct2d, GroupNormAct, GroupNorm1Act, LayerNormAct, LayerNormAct2d,\
SyncBatchNormAct, convert_sync_batchnorm, FrozenBatchNormAct2d, freeze_batch_norm_2d, unfreeze_batch_norm_2d
from .padding import get_padding, get_same_padding, pad_same

View File

@ -10,7 +10,7 @@ from typing import Type
import torch.nn as nn
from .norm import GroupNorm, GroupNorm1, LayerNorm, LayerNorm2d, RmsNorm
from .norm import GroupNorm, GroupNorm1, LayerNorm, LayerNorm2d, RmsNorm, RmsNorm2d
from torchvision.ops.misc import FrozenBatchNorm2d
_NORM_MAP = dict(
@ -22,6 +22,7 @@ _NORM_MAP = dict(
layernorm=LayerNorm,
layernorm2d=LayerNorm2d,
rmsnorm=RmsNorm,
rmsnorm2d=RmsNorm2d,
frozenbatchnorm2d=FrozenBatchNorm2d,
)
_NORM_TYPES = {m for n, m in _NORM_MAP.items()}

View File

@ -152,3 +152,41 @@ class RmsNorm(nn.Module):
# Since there is no built-in PyTorch impl, always use APEX RmsNorm if is installed.
x = fast_rms_norm(x, self.normalized_shape, self.weight, self.eps)
return x
class RmsNorm2d(nn.Module):
""" RmsNorm w/ fast (apex) norm if available
"""
__constants__ = ['normalized_shape', 'eps', 'elementwise_affine']
normalized_shape: Tuple[int, ...]
eps: float
elementwise_affine: bool
def __init__(self, channels, eps=1e-6, affine=True, device=None, dtype=None) -> None:
factory_kwargs = {'device': device, 'dtype': dtype}
super().__init__()
normalized_shape = channels
if isinstance(normalized_shape, numbers.Integral):
# mypy error: incompatible types in assignment
normalized_shape = (normalized_shape,) # type: ignore[assignment]
self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type]
self.eps = eps
self.elementwise_affine = affine
if self.elementwise_affine:
self.weight = nn.Parameter(torch.empty(self.normalized_shape, **factory_kwargs))
else:
self.register_parameter('weight', None)
self.reset_parameters()
def reset_parameters(self) -> None:
if self.elementwise_affine:
nn.init.ones_(self.weight)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = x.permute(0, 2, 3, 1)
# NOTE fast norm fallback needs our rms norm impl, so both paths through here.
# Since there is no built-in PyTorch impl, always use APEX RmsNorm if is installed.
x = fast_rms_norm(x, self.normalized_shape, self.weight, self.eps)
x = x.permute(0, 3, 1, 2)
return x

View File

@ -45,7 +45,7 @@ import torch.nn as nn
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
from timm.layers import trunc_normal_, AvgPool2dSame, DropPath, Mlp, GlobalResponseNormMlp, \
LayerNorm2d, LayerNorm, create_conv2d, get_act_layer, make_divisible, to_ntuple
LayerNorm2d, LayerNorm, RmsNorm2d, RmsNorm, create_conv2d, get_act_layer, get_norm_layer, make_divisible, to_ntuple
from timm.layers import NormMlpClassifierHead, ClassifierHead
from ._builder import build_model_with_cfg
from ._features import feature_take_indices
@ -289,24 +289,27 @@ class ConvNeXt(nn.Module):
super().__init__()
assert output_stride in (8, 16, 32)
kernel_sizes = to_ntuple(4)(kernel_sizes)
if norm_layer is None:
norm_layer = LayerNorm2d
norm_layer_cl = norm_layer if conv_mlp else LayerNorm
use_rms = isinstance(norm_layer, str) and norm_layer.startswith('rmsnorm')
if norm_layer is None or use_rms:
norm_layer = RmsNorm2d if use_rms else LayerNorm2d
norm_layer_cl = norm_layer if conv_mlp else (RmsNorm if use_rms else LayerNorm)
if norm_eps is not None:
norm_layer = partial(norm_layer, eps=norm_eps)
norm_layer_cl = partial(norm_layer_cl, eps=norm_eps)
else:
assert conv_mlp,\
'If a norm_layer is specified, conv MLP must be used so all norm expect rank-4, channels-first input'
norm_layer = get_norm_layer(norm_layer)
norm_layer_cl = norm_layer
if norm_eps is not None:
norm_layer_cl = partial(norm_layer_cl, eps=norm_eps)
act_layer = get_act_layer(act_layer)
self.num_classes = num_classes
self.drop_rate = drop_rate
self.feature_info = []
assert stem_type in ('patch', 'overlap', 'overlap_tiered')
assert stem_type in ('patch', 'overlap', 'overlap_tiered', 'overlap_act')
if stem_type == 'patch':
# NOTE: this stem is a minimal form of ViT PatchEmbed, as used in SwinTransformer w/ patch_size = 4
self.stem = nn.Sequential(
@ -316,11 +319,12 @@ class ConvNeXt(nn.Module):
stem_stride = patch_size
else:
mid_chs = make_divisible(dims[0] // 2) if 'tiered' in stem_type else dims[0]
self.stem = nn.Sequential(
self.stem = nn.Sequential(*filter(None, [
nn.Conv2d(in_chans, mid_chs, kernel_size=3, stride=2, padding=1, bias=conv_bias),
act_layer() if 'act' in stem_type else None,
nn.Conv2d(mid_chs, dims[0], kernel_size=3, stride=2, padding=1, bias=conv_bias),
norm_layer(dims[0]),
)
]))
stem_stride = 4
self.stages = nn.Sequential()
@ -592,6 +596,14 @@ default_cfgs = generate_default_cfgs({
hf_hub_id='timm/',
crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0),
'convnext_zepto_rms.untrained': _cfg(
#hf_hub_id='timm/',
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
test_input_size=(3, 256, 256), test_crop_pct=0.95),
'convnext_zepto_rms_ols.untrained': _cfg(
# hf_hub_id='timm/',
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
test_input_size=(3, 256, 256), test_crop_pct=0.95),
'convnext_atto.d2_in1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_atto_d2-01bb0f51.pth',
hf_hub_id='timm/',
@ -600,6 +612,9 @@ default_cfgs = generate_default_cfgs({
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_atto_ols_a2-78d1c8f3.pth',
hf_hub_id='timm/',
test_input_size=(3, 288, 288), test_crop_pct=0.95),
'convnext_atto_rms.untrained': _cfg(
#hf_hub_id='timm/',
test_input_size=(3, 256, 256), test_crop_pct=0.95),
'convnext_femto.d1_in1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_femto_d1-d71d5b4c.pth',
hf_hub_id='timm/',
@ -968,6 +983,23 @@ default_cfgs = generate_default_cfgs({
})
@register_model
def convnext_zepto_rms(pretrained=False, **kwargs) -> ConvNeXt:
# timm femto variant (NOTE: still tweaking depths, will vary between 3-4M param, current is 3.7M
model_args = dict(depths=(2, 2, 4, 2), dims=(32, 64, 128, 256), conv_mlp=True, norm_layer='rmsnorm2d')
model = _create_convnext('convnext_zepto_rms', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def convnext_zepto_rms_ols(pretrained=False, **kwargs) -> ConvNeXt:
# timm femto variant (NOTE: still tweaking depths, will vary between 3-4M param, current is 3.7M
model_args = dict(
depths=(2, 2, 4, 2), dims=(32, 64, 128, 256), conv_mlp=True, norm_layer='rmsnorm2d', stem_type='overlap_act')
model = _create_convnext('convnext_zepto_rms_oas', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def convnext_atto(pretrained=False, **kwargs) -> ConvNeXt:
# timm femto variant (NOTE: still tweaking depths, will vary between 3-4M param, current is 3.7M
@ -984,6 +1016,14 @@ def convnext_atto_ols(pretrained=False, **kwargs) -> ConvNeXt:
return model
@register_model
def convnext_atto_rms(pretrained=False, **kwargs) -> ConvNeXt:
# timm femto variant (NOTE: still tweaking depths, will vary between 3-4M param, current is 3.7M
model_args = dict(depths=(2, 2, 6, 2), dims=(40, 80, 160, 320), conv_mlp=True, norm_layer='rmsnorm2d')
model = _create_convnext('convnext_atto_rms', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def convnext_femto(pretrained=False, **kwargs) -> ConvNeXt:
# timm femto variant