mirror of
https://github.com/huggingface/pytorch-image-models.git
synced 2025-06-03 15:01:08 +08:00
support tiny_vit
This commit is contained in:
parent
8befebd93c
commit
5e8cc616d4
@ -10,7 +10,7 @@ __all__ = ['TinyVit']
|
||||
|
||||
import itertools
|
||||
from functools import partial
|
||||
from typing import Dict, Optional
|
||||
from typing import Dict, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
@ -20,6 +20,7 @@ from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
||||
from timm.layers import LayerNorm2d, NormMlpClassifierHead, DropPath,\
|
||||
trunc_normal_, resize_rel_pos_bias_table_levit, use_fused_attn
|
||||
from ._builder import build_model_with_cfg
|
||||
from ._features import feature_take_indices
|
||||
from ._features_fx import register_notrace_module
|
||||
from ._manipulate import checkpoint_seq
|
||||
from ._registry import register_model, generate_default_cfgs
|
||||
@ -536,6 +537,62 @@ class TinyVit(nn.Module):
|
||||
self.num_classes = num_classes
|
||||
self.head.reset(num_classes, pool_type=global_pool)
|
||||
|
||||
def forward_intermediates(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
indices: Optional[Union[int, List[int]]] = None,
|
||||
norm: bool = False,
|
||||
stop_early: bool = False,
|
||||
output_fmt: str = 'NCHW',
|
||||
intermediates_only: bool = False,
|
||||
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
|
||||
""" Forward features that returns intermediates.
|
||||
|
||||
Args:
|
||||
x: Input image tensor
|
||||
indices: Take last n blocks if int, all if None, select matching indices if sequence
|
||||
norm: Apply norm layer to compatible intermediates
|
||||
stop_early: Stop iterating over blocks when last desired intermediate hit
|
||||
output_fmt: Shape of intermediate feature outputs
|
||||
intermediates_only: Only return intermediate features
|
||||
Returns:
|
||||
|
||||
"""
|
||||
assert output_fmt in ('NCHW',), 'Output shape must be NCHW.'
|
||||
intermediates = []
|
||||
take_indices, max_index = feature_take_indices(len(self.stages), indices)
|
||||
|
||||
# forward pass
|
||||
x = self.patch_embed(x)
|
||||
if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript
|
||||
stages = self.stages
|
||||
else:
|
||||
stages = self.stages[:max_index + 1]
|
||||
|
||||
for feat_idx, stage in enumerate(stages):
|
||||
x = stage(x)
|
||||
if feat_idx in take_indices:
|
||||
intermediates.append(x)
|
||||
|
||||
if intermediates_only:
|
||||
return intermediates
|
||||
|
||||
return x, intermediates
|
||||
|
||||
def prune_intermediate_layers(
|
||||
self,
|
||||
indices: Union[int, List[int]] = 1,
|
||||
prune_norm: bool = False,
|
||||
prune_head: bool = True,
|
||||
):
|
||||
""" Prune layers not required for specified intermediates.
|
||||
"""
|
||||
take_indices, max_index = feature_take_indices(len(self.stages), indices)
|
||||
self.stages = self.stages[:max_index + 1] # truncate blocks w/ stem as idx 0
|
||||
if prune_head:
|
||||
self.reset_classifier(0, '')
|
||||
return take_indices
|
||||
|
||||
def forward_features(self, x):
|
||||
x = self.patch_embed(x)
|
||||
if self.grad_checkpointing and not torch.jit.is_scripting():
|
||||
|
@ -253,7 +253,6 @@ class TResNet(nn.Module):
|
||||
assert output_fmt in ('NCHW',), 'Output shape must be NCHW.'
|
||||
intermediates = []
|
||||
take_indices, max_index = feature_take_indices(len(self.body) - 1, indices)
|
||||
print(take_indices, max_index)
|
||||
|
||||
# forward pass
|
||||
x = self.body[0](x) # s2d
|
||||
@ -261,7 +260,6 @@ class TResNet(nn.Module):
|
||||
stages = [self.body[1], self.body[2], self.body[3], self.body[4], self.body[5]]
|
||||
else:
|
||||
stages = self.body[1:max_index + 2]
|
||||
print(len(stages))
|
||||
|
||||
for feat_idx, stage in enumerate(stages):
|
||||
x = stage(x)
|
||||
|
Loading…
x
Reference in New Issue
Block a user