mirror of
https://github.com/huggingface/pytorch-image-models.git
synced 2025-06-03 15:01:08 +08:00
Fix MobileNetV2 head conv size for multiplier < 1.0. Add some missing modification copyrights, fix starting date of some old ones.
This commit is contained in:
parent
ccfeb06936
commit
61ce0d7daf
@ -15,7 +15,7 @@ Papers:
|
||||
RandAugment: Practical automated data augmentation... - https://arxiv.org/abs/1909.13719
|
||||
AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty - https://arxiv.org/abs/1912.02781
|
||||
|
||||
Hacked together by / Copyright 2020 Ross Wightman
|
||||
Hacked together by / Copyright 2019, Ross Wightman
|
||||
"""
|
||||
import random
|
||||
import math
|
||||
|
@ -1,6 +1,6 @@
|
||||
""" Quick n Simple Image Folder, Tarfile based DataSet
|
||||
|
||||
Hacked together by / Copyright 2020 Ross Wightman
|
||||
Hacked together by / Copyright 2019, Ross Wightman
|
||||
"""
|
||||
import torch.utils.data as data
|
||||
import os
|
||||
|
@ -1,3 +1,7 @@
|
||||
""" Dataset Factory
|
||||
|
||||
Hacked together by / Copyright 2021, Ross Wightman
|
||||
"""
|
||||
import os
|
||||
|
||||
from torchvision.datasets import CIFAR100, CIFAR10, MNIST, QMNIST, KMNIST, FashionMNIST, ImageNet, ImageFolder
|
||||
|
@ -3,7 +3,7 @@
|
||||
Prefetcher and Fast Collate inspired by NVIDIA APEX example at
|
||||
https://github.com/NVIDIA/apex/commit/d5e2bb4bdeedd27b1dfaf5bb2b24d6c000dee9be#diff-cf86c282ff7fba81fad27a559379d5bf
|
||||
|
||||
Hacked together by / Copyright 2021 Ross Wightman
|
||||
Hacked together by / Copyright 2019, Ross Wightman
|
||||
"""
|
||||
import random
|
||||
from functools import partial
|
||||
|
@ -8,7 +8,7 @@ CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Fea
|
||||
Code Reference:
|
||||
CutMix: https://github.com/clovaai/CutMix-PyTorch
|
||||
|
||||
Hacked together by / Copyright 2020 Ross Wightman
|
||||
Hacked together by / Copyright 2019, Ross Wightman
|
||||
"""
|
||||
import numpy as np
|
||||
import torch
|
||||
|
@ -3,7 +3,7 @@
|
||||
Originally inspired by impl at https://github.com/zhunzhong07/Random-Erasing, Apache 2.0
|
||||
Copyright Zhun Zhong & Liang Zheng
|
||||
|
||||
Hacked together by / Copyright 2020 Ross Wightman
|
||||
Hacked together by / Copyright 2019, Ross Wightman
|
||||
"""
|
||||
import random
|
||||
import math
|
||||
|
@ -1,7 +1,7 @@
|
||||
""" Transforms Factory
|
||||
Factory methods for building image transforms for use with TIMM (PyTorch Image Models)
|
||||
|
||||
Hacked together by / Copyright 2020 Ross Wightman
|
||||
Hacked together by / Copyright 2019, Ross Wightman
|
||||
"""
|
||||
import math
|
||||
|
||||
|
@ -4,6 +4,7 @@ Paper: 'Going deeper with Image Transformers' - https://arxiv.org/abs/2103.17239
|
||||
|
||||
Original code and weights from https://github.com/facebookresearch/deit, copyright below
|
||||
|
||||
Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman
|
||||
"""
|
||||
# Copyright (c) 2015-present, Facebook, Inc.
|
||||
# All rights reserved.
|
||||
|
@ -9,6 +9,8 @@
|
||||
|
||||
Paper link: https://arxiv.org/abs/2103.10697
|
||||
Original code: https://github.com/facebookresearch/convit, original copyright below
|
||||
|
||||
Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman
|
||||
"""
|
||||
# Copyright (c) 2015-present, Facebook, Inc.
|
||||
# All rights reserved.
|
||||
|
@ -12,6 +12,8 @@ Paper link: https://arxiv.org/abs/2103.14899
|
||||
Original code: https://github.com/IBM/CrossViT/blob/main/models/crossvit.py
|
||||
|
||||
NOTE: model names have been renamed from originals to represent actual input res all *_224 -> *_240 and *_384 -> *_408
|
||||
|
||||
Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman
|
||||
"""
|
||||
|
||||
# Copyright IBM All Rights Reserved.
|
||||
|
@ -409,7 +409,7 @@ class CspNet(nn.Module):
|
||||
def _create_cspnet(variant, pretrained=False, **kwargs):
|
||||
cfg_variant = variant.split('_')[0]
|
||||
# NOTE: DarkNet is one of few models with stride==1 features w/ 6 out_indices [0..5]
|
||||
out_indices = kwargs.get('out_indices', (0, 1, 2, 3, 4, 5) if 'darknet' in variant else (0, 1, 2, 3, 4))
|
||||
out_indices = kwargs.pop('out_indices', (0, 1, 2, 3, 4, 5) if 'darknet' in variant else (0, 1, 2, 3, 4))
|
||||
return build_model_with_cfg(
|
||||
CspNet, variant, pretrained,
|
||||
default_cfg=default_cfgs[variant],
|
||||
|
@ -33,7 +33,7 @@ The majority of the above models (EfficientNet*, MixNet, MnasNet) and original w
|
||||
by Mingxing Tan, Quoc Le, and other members of their Google Brain team. Thanks for consistently releasing
|
||||
the models and weights open source!
|
||||
|
||||
Hacked together by / Copyright 2021 Ross Wightman
|
||||
Hacked together by / Copyright 2019, Ross Wightman
|
||||
"""
|
||||
from functools import partial
|
||||
from typing import List
|
||||
@ -718,7 +718,7 @@ def _gen_mobilenet_v2(
|
||||
round_chs_fn = partial(round_channels, multiplier=channel_multiplier)
|
||||
model_kwargs = dict(
|
||||
block_args=decode_arch_def(arch_def, depth_multiplier=depth_multiplier, fix_first_last=fix_stem_head),
|
||||
num_features=1280 if fix_stem_head else round_chs_fn(1280),
|
||||
num_features=1280 if fix_stem_head else max(1280, round_chs_fn(1280)),
|
||||
stem_size=32,
|
||||
fix_stem=fix_stem_head,
|
||||
round_chs_fn=round_chs_fn,
|
||||
|
@ -1,6 +1,6 @@
|
||||
""" EfficientNet, MobileNetV3, etc Blocks
|
||||
|
||||
Hacked together by / Copyright 2020 Ross Wightman
|
||||
Hacked together by / Copyright 2019, Ross Wightman
|
||||
"""
|
||||
|
||||
import torch
|
||||
|
@ -3,7 +3,7 @@
|
||||
Assembles EfficieNet and related network feature blocks from string definitions.
|
||||
Handles stride, dilation calculations, and selects feature extraction points.
|
||||
|
||||
Hacked together by / Copyright 2020 Ross Wightman
|
||||
Hacked together by / Copyright 2019, Ross Wightman
|
||||
"""
|
||||
|
||||
import logging
|
||||
|
@ -21,7 +21,7 @@ from .helpers import to_ntuple, to_2tuple, to_3tuple, to_4tuple, make_divisible
|
||||
from .inplace_abn import InplaceAbn
|
||||
from .linear import Linear
|
||||
from .mixed_conv2d import MixedConv2d
|
||||
from .mlp import Mlp, GluMlp, GatedMlp
|
||||
from .mlp import Mlp, GluMlp, GatedMlp, ConvMlp
|
||||
from .non_local_attn import NonLocalAttn, BatNonLocalAttn
|
||||
from .norm import GroupNorm, LayerNorm2d
|
||||
from .norm_act import BatchNormAct2d, GroupNormAct
|
||||
|
@ -14,7 +14,7 @@ Adapted from official impl at https://github.com/facebookresearch/LeViT, origina
|
||||
|
||||
This version combines both conv/linear models and fixes torchscript compatibility.
|
||||
|
||||
Modifications by/coyright Copyright 2021 Ross Wightman
|
||||
Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman
|
||||
"""
|
||||
|
||||
# Copyright (c) 2015-present, Facebook, Inc.
|
||||
|
@ -1,11 +1,10 @@
|
||||
|
||||
""" MobileNet V3
|
||||
|
||||
A PyTorch impl of MobileNet-V3, compatible with TF weights from official impl.
|
||||
|
||||
Paper: Searching for MobileNetV3 - https://arxiv.org/abs/1905.02244
|
||||
|
||||
Hacked together by / Copyright 2021 Ross Wightman
|
||||
Hacked together by / Copyright 2019, Ross Wightman
|
||||
"""
|
||||
from functools import partial
|
||||
from typing import List
|
||||
|
@ -4,7 +4,8 @@ This started as a copy of https://github.com/pytorch/vision 'resnet.py' (BSD-3-C
|
||||
additional dropout and dynamic global avg/max pool.
|
||||
|
||||
ResNeXt, SE-ResNeXt, SENet, and MXNet Gluon stem/downsample variants, tiered stems added by Ross Wightman
|
||||
Copyright 2020 Ross Wightman
|
||||
|
||||
Copyright 2019, Ross Wightman
|
||||
"""
|
||||
import math
|
||||
from functools import partial
|
||||
|
@ -4,6 +4,7 @@ A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shi
|
||||
|
||||
Code/weights from https://github.com/microsoft/Swin-Transformer, original copyright/license info below
|
||||
|
||||
Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman
|
||||
"""
|
||||
# --------------------------------------------------------
|
||||
# Swin Transformer
|
||||
|
@ -180,7 +180,7 @@ def _filter_fn(state_dict):
|
||||
def _create_vgg(variant: str, pretrained: bool, **kwargs: Any) -> VGG:
|
||||
cfg = variant.split('_')[0]
|
||||
# NOTE: VGG is one of few models with stride==1 features w/ 6 out_indices [0..5]
|
||||
out_indices = kwargs.get('out_indices', (0, 1, 2, 3, 4, 5))
|
||||
out_indices = kwargs.pop('out_indices', (0, 1, 2, 3, 4, 5))
|
||||
model = build_model_with_cfg(
|
||||
VGG, variant, pretrained,
|
||||
default_cfg=default_cfgs[variant],
|
||||
|
@ -4,6 +4,7 @@ Paper: Visformer: The Vision-friendly Transformer - https://arxiv.org/abs/2104.1
|
||||
|
||||
From original at https://github.com/danczs/Visformer
|
||||
|
||||
Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman
|
||||
"""
|
||||
from copy import deepcopy
|
||||
|
||||
|
@ -20,7 +20,7 @@ for some einops/einsum fun
|
||||
* Simple transformer style inspired by Andrej Karpathy's https://github.com/karpathy/minGPT
|
||||
* Bert reference code checks against Huggingface Transformers and Tensorflow Bert
|
||||
|
||||
Hacked together by / Copyright 2021 Ross Wightman
|
||||
Hacked together by / Copyright 2020, Ross Wightman
|
||||
"""
|
||||
import math
|
||||
import logging
|
||||
|
@ -11,7 +11,7 @@ A PyTorch implement of the Hybrid Vision Transformers as described in:
|
||||
NOTE These hybrid model definitions depend on code in vision_transformer.py.
|
||||
They were moved here to keep file sizes sane.
|
||||
|
||||
Hacked together by / Copyright 2021 Ross Wightman
|
||||
Hacked together by / Copyright 2020, Ross Wightman
|
||||
"""
|
||||
from copy import deepcopy
|
||||
from functools import partial
|
||||
|
@ -1,10 +1,12 @@
|
||||
""" Cross-Covariance Image Transformer (XCiT) in PyTorch
|
||||
|
||||
Same as the official implementation, with some minor adaptations.
|
||||
- https://github.com/facebookresearch/xcit/blob/master/xcit.py
|
||||
|
||||
Paper:
|
||||
- https://arxiv.org/abs/2106.09681
|
||||
|
||||
Same as the official implementation, with some minor adaptations, original copyright below
|
||||
- https://github.com/facebookresearch/xcit/blob/master/xcit.py
|
||||
|
||||
Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman
|
||||
"""
|
||||
# Copyright (c) 2015-present, Facebook, Inc.
|
||||
# All rights reserved.
|
||||
|
Loading…
x
Reference in New Issue
Block a user