mirror of
https://github.com/huggingface/pytorch-image-models.git
synced 2025-06-03 15:01:08 +08:00
Add Nvidia's NovogGrad impl from Jasper (cleaner/faster than current) and Apex Fused optimizers
This commit is contained in:
parent
3d9c8a6489
commit
64966f61f7
@ -3,5 +3,6 @@ from .rmsprop_tf import RMSpropTF
|
|||||||
from .adamw import AdamW
|
from .adamw import AdamW
|
||||||
from .radam import RAdam
|
from .radam import RAdam
|
||||||
from .novograd import NovoGrad
|
from .novograd import NovoGrad
|
||||||
|
from .nvnovograd import NvNovoGrad
|
||||||
from .lookahead import Lookahead
|
from .lookahead import Lookahead
|
||||||
from .optim_factory import create_optimizer
|
from .optim_factory import create_optimizer
|
||||||
|
@ -0,0 +1,118 @@
|
|||||||
|
""" Nvidia NovoGrad Optimizer.
|
||||||
|
Original impl by Nvidia from Jasper example:
|
||||||
|
- https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/SpeechRecognition/Jasper
|
||||||
|
Paper: `Stochastic Gradient Methods with Layer-wise Adaptive Moments for Training of Deep Networks`
|
||||||
|
- https://arxiv.org/abs/1905.11286
|
||||||
|
"""
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from torch.optim.optimizer import Optimizer
|
||||||
|
import math
|
||||||
|
|
||||||
|
|
||||||
|
class NvNovoGrad(Optimizer):
|
||||||
|
"""
|
||||||
|
Implements Novograd algorithm.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params (iterable): iterable of parameters to optimize or dicts defining
|
||||||
|
parameter groups
|
||||||
|
lr (float, optional): learning rate (default: 1e-3)
|
||||||
|
betas (Tuple[float, float], optional): coefficients used for computing
|
||||||
|
running averages of gradient and its square (default: (0.95, 0.98))
|
||||||
|
eps (float, optional): term added to the denominator to improve
|
||||||
|
numerical stability (default: 1e-8)
|
||||||
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
|
||||||
|
grad_averaging: gradient averaging
|
||||||
|
amsgrad (boolean, optional): whether to use the AMSGrad variant of this
|
||||||
|
algorithm from the paper `On the Convergence of Adam and Beyond`_
|
||||||
|
(default: False)
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, params, lr=1e-3, betas=(0.95, 0.98), eps=1e-8,
|
||||||
|
weight_decay=0, grad_averaging=False, amsgrad=False):
|
||||||
|
if not 0.0 <= lr:
|
||||||
|
raise ValueError("Invalid learning rate: {}".format(lr))
|
||||||
|
if not 0.0 <= eps:
|
||||||
|
raise ValueError("Invalid epsilon value: {}".format(eps))
|
||||||
|
if not 0.0 <= betas[0] < 1.0:
|
||||||
|
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
|
||||||
|
if not 0.0 <= betas[1] < 1.0:
|
||||||
|
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
|
||||||
|
defaults = dict(lr=lr, betas=betas, eps=eps,
|
||||||
|
weight_decay=weight_decay,
|
||||||
|
grad_averaging=grad_averaging,
|
||||||
|
amsgrad=amsgrad)
|
||||||
|
|
||||||
|
super(NvNovoGrad, self).__init__(params, defaults)
|
||||||
|
|
||||||
|
def __setstate__(self, state):
|
||||||
|
super(NvNovoGrad, self).__setstate__(state)
|
||||||
|
for group in self.param_groups:
|
||||||
|
group.setdefault('amsgrad', False)
|
||||||
|
|
||||||
|
def step(self, closure=None):
|
||||||
|
"""Performs a single optimization step.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
closure (callable, optional): A closure that reevaluates the model
|
||||||
|
and returns the loss.
|
||||||
|
"""
|
||||||
|
loss = None
|
||||||
|
if closure is not None:
|
||||||
|
loss = closure()
|
||||||
|
|
||||||
|
for group in self.param_groups:
|
||||||
|
for p in group['params']:
|
||||||
|
if p.grad is None:
|
||||||
|
continue
|
||||||
|
grad = p.grad.data
|
||||||
|
if grad.is_sparse:
|
||||||
|
raise RuntimeError('Sparse gradients are not supported.')
|
||||||
|
amsgrad = group['amsgrad']
|
||||||
|
|
||||||
|
state = self.state[p]
|
||||||
|
|
||||||
|
# State initialization
|
||||||
|
if len(state) == 0:
|
||||||
|
state['step'] = 0
|
||||||
|
# Exponential moving average of gradient values
|
||||||
|
state['exp_avg'] = torch.zeros_like(p.data)
|
||||||
|
# Exponential moving average of squared gradient values
|
||||||
|
state['exp_avg_sq'] = torch.zeros([]).to(state['exp_avg'].device)
|
||||||
|
if amsgrad:
|
||||||
|
# Maintains max of all exp. moving avg. of sq. grad. values
|
||||||
|
state['max_exp_avg_sq'] = torch.zeros([]).to(state['exp_avg'].device)
|
||||||
|
|
||||||
|
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
|
||||||
|
if amsgrad:
|
||||||
|
max_exp_avg_sq = state['max_exp_avg_sq']
|
||||||
|
beta1, beta2 = group['betas']
|
||||||
|
|
||||||
|
state['step'] += 1
|
||||||
|
|
||||||
|
norm = torch.sum(torch.pow(grad, 2))
|
||||||
|
|
||||||
|
if exp_avg_sq == 0:
|
||||||
|
exp_avg_sq.copy_(norm)
|
||||||
|
else:
|
||||||
|
exp_avg_sq.mul_(beta2).add_(1 - beta2, norm)
|
||||||
|
|
||||||
|
if amsgrad:
|
||||||
|
# Maintains the maximum of all 2nd moment running avg. till now
|
||||||
|
torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq)
|
||||||
|
# Use the max. for normalizing running avg. of gradient
|
||||||
|
denom = max_exp_avg_sq.sqrt().add_(group['eps'])
|
||||||
|
else:
|
||||||
|
denom = exp_avg_sq.sqrt().add_(group['eps'])
|
||||||
|
|
||||||
|
grad.div_(denom)
|
||||||
|
if group['weight_decay'] != 0:
|
||||||
|
grad.add_(group['weight_decay'], p.data)
|
||||||
|
if group['grad_averaging']:
|
||||||
|
grad.mul_(1 - beta1)
|
||||||
|
exp_avg.mul_(beta1).add_(grad)
|
||||||
|
|
||||||
|
p.data.add_(-group['lr'], exp_avg)
|
||||||
|
|
||||||
|
return loss
|
@ -1,5 +1,11 @@
|
|||||||
|
import torch
|
||||||
from torch import optim as optim
|
from torch import optim as optim
|
||||||
from timm.optim import Nadam, RMSpropTF, AdamW, RAdam, NovoGrad, Lookahead
|
from timm.optim import Nadam, RMSpropTF, AdamW, RAdam, NovoGrad, NvNovoGrad, Lookahead
|
||||||
|
try:
|
||||||
|
from apex.optimizers import FusedNovoGrad, FusedAdam, FusedLAMB, FusedSGD
|
||||||
|
has_apex = True
|
||||||
|
except ImportError:
|
||||||
|
has_apex = False
|
||||||
|
|
||||||
|
|
||||||
def add_weight_decay(model, weight_decay=1e-5, skip_list=()):
|
def add_weight_decay(model, weight_decay=1e-5, skip_list=()):
|
||||||
@ -20,9 +26,10 @@ def add_weight_decay(model, weight_decay=1e-5, skip_list=()):
|
|||||||
def create_optimizer(args, model, filter_bias_and_bn=True):
|
def create_optimizer(args, model, filter_bias_and_bn=True):
|
||||||
opt_lower = args.opt.lower()
|
opt_lower = args.opt.lower()
|
||||||
weight_decay = args.weight_decay
|
weight_decay = args.weight_decay
|
||||||
if opt_lower == 'adamw' or opt_lower == 'radam':
|
if 'adamw' in opt_lower or 'radam' in opt_lower:
|
||||||
# compensate for the way current AdamW and RAdam optimizers
|
# Compensate for the way current AdamW and RAdam optimizers apply LR to the weight-decay
|
||||||
# apply the weight-decay
|
# I don't believe they follow the paper or original Torch7 impl which schedules weight
|
||||||
|
# decay based on the ratio of current_lr/initial_lr
|
||||||
weight_decay /= args.lr
|
weight_decay /= args.lr
|
||||||
if weight_decay and filter_bias_and_bn:
|
if weight_decay and filter_bias_and_bn:
|
||||||
parameters = add_weight_decay(model, weight_decay)
|
parameters = add_weight_decay(model, weight_decay)
|
||||||
@ -30,12 +37,14 @@ def create_optimizer(args, model, filter_bias_and_bn=True):
|
|||||||
else:
|
else:
|
||||||
parameters = model.parameters()
|
parameters = model.parameters()
|
||||||
|
|
||||||
|
if 'fused' in opt_lower:
|
||||||
|
assert has_apex and torch.cuda.is_available(), 'APEX and CUDA required for fused optimizers'
|
||||||
|
|
||||||
opt_split = opt_lower.split('_')
|
opt_split = opt_lower.split('_')
|
||||||
opt_lower = opt_split[-1]
|
opt_lower = opt_split[-1]
|
||||||
if opt_lower == 'sgd':
|
if opt_lower == 'sgd':
|
||||||
optimizer = optim.SGD(
|
optimizer = optim.SGD(
|
||||||
parameters, lr=args.lr,
|
parameters, lr=args.lr, momentum=args.momentum, weight_decay=weight_decay, nesterov=True)
|
||||||
momentum=args.momentum, weight_decay=weight_decay, nesterov=True)
|
|
||||||
elif opt_lower == 'adam':
|
elif opt_lower == 'adam':
|
||||||
optimizer = optim.Adam(
|
optimizer = optim.Adam(
|
||||||
parameters, lr=args.lr, weight_decay=weight_decay, eps=args.opt_eps)
|
parameters, lr=args.lr, weight_decay=weight_decay, eps=args.opt_eps)
|
||||||
@ -61,6 +70,22 @@ def create_optimizer(args, model, filter_bias_and_bn=True):
|
|||||||
momentum=args.momentum, weight_decay=weight_decay)
|
momentum=args.momentum, weight_decay=weight_decay)
|
||||||
elif opt_lower == 'novograd':
|
elif opt_lower == 'novograd':
|
||||||
optimizer = NovoGrad(parameters, lr=args.lr, weight_decay=weight_decay, eps=args.opt_eps)
|
optimizer = NovoGrad(parameters, lr=args.lr, weight_decay=weight_decay, eps=args.opt_eps)
|
||||||
|
elif opt_lower == 'nvnovograd':
|
||||||
|
optimizer = NvNovoGrad(parameters, lr=args.lr, weight_decay=weight_decay, eps=args.opt_eps)
|
||||||
|
elif opt_lower == 'fusedsgd':
|
||||||
|
optimizer = FusedSGD(
|
||||||
|
parameters, lr=args.lr, momentum=args.momentum, weight_decay=weight_decay, nesterov=True)
|
||||||
|
elif opt_lower == 'fusedadam':
|
||||||
|
optimizer = FusedAdam(
|
||||||
|
parameters, lr=args.lr, adam_w_mode=False, weight_decay=weight_decay, eps=args.opt_eps)
|
||||||
|
elif opt_lower == 'fusedadamw':
|
||||||
|
optimizer = FusedAdam(
|
||||||
|
parameters, lr=args.lr, adam_w_mode=True, weight_decay=weight_decay, eps=args.opt_eps)
|
||||||
|
elif opt_lower == 'fusedlamb':
|
||||||
|
optimizer = FusedLAMB(parameters, lr=args.lr, weight_decay=weight_decay, eps=args.opt_eps)
|
||||||
|
elif opt_lower == 'fusednovograd':
|
||||||
|
optimizer = FusedNovoGrad(
|
||||||
|
parameters, lr=args.lr, betas=(0.95, 0.98), weight_decay=weight_decay, eps=args.opt_eps)
|
||||||
else:
|
else:
|
||||||
assert False and "Invalid optimizer"
|
assert False and "Invalid optimizer"
|
||||||
raise ValueError
|
raise ValueError
|
||||||
|
Loading…
x
Reference in New Issue
Block a user