mirror of
https://github.com/huggingface/pytorch-image-models.git
synced 2025-06-03 15:01:08 +08:00
Switch random erasing to doing normal_() on CPU to avoid instability, remove a debug print
This commit is contained in:
parent
c6b32cbe73
commit
65a634626f
@ -6,12 +6,13 @@ import torch
|
||||
def _get_pixels(per_pixel, rand_color, patch_size, dtype=torch.float32, device='cuda'):
|
||||
# NOTE I've seen CUDA illegal memory access errors being caused by the normal_()
|
||||
# paths, flip the order so normal is run on CPU if this becomes a problem
|
||||
# ie torch.empty(patch_size, dtype=dtype).normal_().to(device=device)
|
||||
# Issue has been fixed in master https://github.com/pytorch/pytorch/issues/19508
|
||||
# will revert back to doing normal_() on GPU when it's in next release
|
||||
if per_pixel:
|
||||
return torch.empty(
|
||||
patch_size, dtype=dtype, device=device).normal_()
|
||||
patch_size, dtype=dtype).normal_().to(device=device)
|
||||
elif rand_color:
|
||||
return torch.empty((patch_size[0], 1, 1), dtype=dtype, device=device).normal_()
|
||||
return torch.empty((patch_size[0], 1, 1), dtype=dtype).normal_().to(device=device)
|
||||
else:
|
||||
return torch.zeros((patch_size[0], 1, 1), dtype=dtype, device=device)
|
||||
|
||||
|
@ -171,7 +171,6 @@ def transforms_imagenet_train(
|
||||
else:
|
||||
# if it's a scalar, duplicate for brightness, contrast, and saturation, no hue
|
||||
color_jitter = (float(color_jitter),) * 3
|
||||
print(*color_jitter)
|
||||
|
||||
tfl = [
|
||||
RandomResizedCropAndInterpolation(
|
||||
|
Loading…
x
Reference in New Issue
Block a user