From 66a0eb46731d2c2c5ea2c035d4b83fc69fa0bd92 Mon Sep 17 00:00:00 2001 From: Ross Wightman Date: Fri, 7 Jun 2024 16:09:25 -0700 Subject: [PATCH] Experimenting with tiny test models, how small can they go and be useful for regression tests? --- timm/models/byobnet.py | 24 +++++++++++++++++++++ timm/models/efficientnet.py | 36 +++++++++++++++++++++++++++++++ timm/models/vision_transformer.py | 18 +++++++++++++--- 3 files changed, 75 insertions(+), 3 deletions(-) diff --git a/timm/models/byobnet.py b/timm/models/byobnet.py index 02e25836..d05735d1 100644 --- a/timm/models/byobnet.py +++ b/timm/models/byobnet.py @@ -1834,6 +1834,18 @@ model_cfgs = dict( stem_type='one', stem_chs=64, ), + + test_tiny_resnet=ByoModelCfg( + blocks=( + ByoBlockCfg(type='basic', d=1, c=24, s=1, gs=1, br=0.25), + ByoBlockCfg(type='basic', d=1, c=32, s=2, gs=1, br=0.25), + ByoBlockCfg(type='basic', d=1, c=64, s=2, gs=1, br=0.25), + ByoBlockCfg(type='basic', d=1, c=128, s=2, gs=1, br=0.25), + ), + stem_chs=32, + stem_pool='maxpool', + act_layer='relu', + ), ) @@ -2035,6 +2047,11 @@ default_cfgs = generate_default_cfgs({ crop_pct=0.9, first_conv=('stem.conv_kxk.0.conv', 'stem.conv_scale.conv'), ), + + 'test_tiny_byobnet.untrained': _cfgr( + # hf_hub_id='timm/', + input_size=(3, 160, 160), crop_pct=0.875, pool_size=(5, 5), + ), }) @@ -2337,3 +2354,10 @@ def mobileone_s4(pretrained=False, **kwargs) -> ByobNet: """ """ return _create_byobnet('mobileone_s4', pretrained=pretrained, **kwargs) + + +@register_model +def test_tiny_byobnet(pretrained=False, **kwargs) -> ByobNet: + """ Minimal test ResNet (BYOB based) model. + """ + return _create_byobnet('test_tiny_byobnet', pretrained=pretrained, **kwargs) diff --git a/timm/models/efficientnet.py b/timm/models/efficientnet.py index 36059577..57efb907 100644 --- a/timm/models/efficientnet.py +++ b/timm/models/efficientnet.py @@ -1056,6 +1056,31 @@ def _gen_tinynet( return model +def _gen_test_efficientnet( + variant, channel_multiplier=1.0, depth_multiplier=1.0, pretrained=False, **kwargs): + """ Minimal test EfficientNet generator. + """ + arch_def = [ + ['cn_r1_k3_s1_e1_c16_skip'], + ['er_r1_k3_s2_e4_c24'], + ['er_r1_k3_s2_e4_c32'], + ['ir_r1_k3_s2_e4_c48_se0.25'], + ['ir_r1_k3_s2_e4_c64_se0.25'], + ] + round_chs_fn = partial(round_channels, multiplier=channel_multiplier, round_limit=0.) + model_kwargs = dict( + block_args=decode_arch_def(arch_def, depth_multiplier), + num_features=round_chs_fn(256), + stem_size=24, + round_chs_fn=round_chs_fn, + norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), + act_layer=resolve_act_layer(kwargs, 'silu'), + **kwargs, + ) + model = _create_effnet(variant, pretrained, **model_kwargs) + return model + + def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), @@ -1584,6 +1609,10 @@ default_cfgs = generate_default_cfgs({ input_size=(3, 106, 106), pool_size=(4, 4), # int(224 * 0.475) url='https://github.com/huawei-noah/CV-Backbones/releases/download/v1.2.0/tinynet_e.pth', hf_hub_id='timm/'), + + "test_tiny_efficientnet.untrained": _cfg( + # hf_hub_id='timm/' + input_size=(3, 160, 160), pool_size=(5, 5)), }) @@ -2510,6 +2539,13 @@ def tinynet_e(pretrained=False, **kwargs) -> EfficientNet: return model +@register_model +def test_tiny_efficientnet(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_test_efficientnet('test_tiny_efficientnet', pretrained=pretrained, **kwargs) + return model + + + register_model_deprecations(__name__, { 'tf_efficientnet_b0_ap': 'tf_efficientnet_b0.ap_in1k', 'tf_efficientnet_b1_ap': 'tf_efficientnet_b1.ap_in1k', diff --git a/timm/models/vision_transformer.py b/timm/models/vision_transformer.py index a3ca0990..a8bc450f 100644 --- a/timm/models/vision_transformer.py +++ b/timm/models/vision_transformer.py @@ -1929,13 +1929,16 @@ default_cfgs = { hf_hub_id='timm/', num_classes=11821, input_size=(3, 256, 256), crop_pct=0.95), - 'vit_base_patch16_reg4_gap_256': _cfg( + 'vit_base_patch16_reg4_gap_256.untrained': _cfg( input_size=(3, 256, 256)), - 'vit_so150m_patch16_reg4_gap_256': _cfg( + 'vit_so150m_patch16_reg4_gap_256.untrained': _cfg( input_size=(3, 256, 256)), - 'vit_so150m_patch16_reg4_map_256': _cfg( + 'vit_so150m_patch16_reg4_map_256.untrained': _cfg( input_size=(3, 256, 256)), + + 'test_tiny_vit.untrained': _cfg( + input_size=(3, 160, 160), crop_pct=0.875), } _quick_gelu_cfgs = [ @@ -3106,6 +3109,15 @@ def vit_so150m_patch16_reg4_gap_256(pretrained: bool = False, **kwargs) -> Visio return model +@register_model +def test_tiny_vit(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-TestTiny + """ + model_args = dict(patch_size=16, embed_dim=64, depth=4, num_heads=1, mlp_ratio=3) + model = _create_vision_transformer('test_tiny_vit', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + register_model_deprecations(__name__, { 'vit_tiny_patch16_224_in21k': 'vit_tiny_patch16_224.augreg_in21k', 'vit_small_patch32_224_in21k': 'vit_small_patch32_224.augreg_in21k',